
Automating CPM-GOMS

Bonnie John1, Alonso Vera2, Michael Matessa2, Michael Freed2, and Roger Remington2

1Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA
+1 412 268 7182
bej@cs.cmu.edu

2MS 262-4
NASA Ames Research Center

Moffett Field, CA 94035
+1 650 604 6294

avera@arc.nasa.gov

ABSTRACT
CPM-GOMS is a modeling method that combines the task
decomposition of a GOMS analysis with a model of human
resource usage at the level of cognitive, perceptual, and
motor operations. CPM-GOMS models have made accurate
predictions about skilled user behavior in routine tasks, but
developing such models is tedious and error-prone. We
describe a process for automatically generating CPM-GOMS
models from a hierarchical task decomposition expressed in a
cognitive modeling tool called Apex. Resource scheduling in
Apex automates the difficult task of interleaving the
cognitive, perceptual, and motor resources underlying
common task operators (e.g. mouse move-and-click). Apex’s
UI automatically generates PERT charts, which allow
modelers to visualize a model’s complex parallel behavior.
Because interleaving and visualization is now automated, it is
feasible to construct arbitrarily long sequences of behavior.
To demonstrate the process, we present a model of automated
teller interactions in Apex and discuss implications for user
modeling.

Keywords
GOMS, Apex, Task/User Modeling, Tool Support for
Usability Evaluation.

INTRODUCTION AND MOTIVATION
One of the difficulties in developing human interfaces to
complex systems is anticipating the response of users to the
large space of possible system states and design options.
Even extended empirical user testing can fail to uncover
serious difficulties. It would be useful to have a
computational representation of the user that would allow the
designer to simulate user responses to a variety of situations
and design options. Though the field is far from having a
complete model of the user, several computational modeling
approaches have been successful in making accurate
predictions of user choices as well as task completion times

(e.g., [15, 25, 29, 31, 32]). Of the several architectures
available to model human users, the Goals, Operators,
Methods, and Selection (GOMS) method [6, 21] has been the
most widely used, providing accurate, often zero-parameter,
predictions of the routine performance of skilled users in a
wide range of procedural tasks [6, 13, 15, 27, 28].
GOMS is meant to model routine behavior. The user is
assumed to have methods that apply sequences of operators
and to achieve a goal. Selection rules are applied when there
is more than one method to achieve a goal. Many routine
tasks lend themselves well to such decomposition.
Decomposition produces a representation of the task as a set
of nested goal states that include an initial state and a final
state. The iterative decomposition into goals and nested
subgoals can terminate in primitives of any desired
granularity, the choice of level of detail dependent on the
predictions required.
Although GOMS has proven useful in HCI, tools to support
the construction of GOMS models have not yet come into
general use. Several tools have emerged from the research
world, e.g., QGOMS [3], CATHCI [30], GLEAN [24]. All of
these tools aid the modeler to some extent, but all have
drawbacks that prevent them from being heavily used in
design practice today [2]. In addition, none of them automate
any part of the modeling process. However, limited
demonstrations of the potential for automating some portions
of GOMS modeling have been made [4, 16, 26].
We extend these promising directions with a tool that
automates part of the GOMS modeling process using an
existing computational architecture, Apex [9, 10]. Our work
differs from that of our predecessors because Apex served not
only as an implementation platform but provided new insights
into GOMS modeling itself. In addition, the previous work
focused on the higher-level members of the GOMS modeling
family (KLM, CMN-GOMS and NGOMSL; [21]) whereas
our use of Apex emphasizes the lowest-level GOMS
modeling technique (CPM-GOMS). Employing reusable
templates of behavior, our tool allows the modeler to specify
procedural knowledge at a task-level and automates the
translation of that knowledge into interleaved cognitive,
perceptual and motor operators.

Copyright 2001 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
CHI 2002, April 20-25, 2002, Minneapolis, Minnesota, USA.
Copyright 2002 ACM 1-58113-453-3/02/0004…$5.00.

minneapolis, minnesota, usa • 20-25 april 2002 Paper: Controlling Complexity

Volume No. 4, Issue No. 1 147

The next section will introduce key aspects of CPM-GOMS
and the procedure for constructing such models by hand.
Then we will describe Apex, the insights it afforded, and the
procedure for constructing a CPM-GOMS model with that
tool. Finally, we will present an example use of the tool and a
comparison of the resulting CPM-GOMS model to user data.

CONSTRUCTING CPM-GOMS MODELS
John & Kieras [21] described four varieties of GOMS
modeling techniques. Three make the assumption that all
operators occur in sequence and usually do not contain
operators below the activity level (e.g., type-string, move-
and-click-mouse). These three are the original formulation by
Card, Moran and Newell [5, 6] termed CMN-GOMS, the
Keystroke-Level Model (KLM) also formulated by Card
Moran and Newell [6], and NGOMSL [23]. The fourth,
called CPM-GOMS [17, 18], uses operators at the level of
the Model Human Processor (MHP, [6]) and assumes that
operators of the cognitive processor, perceptual processor,
and the motor processor can work in parallel to each other
subject to information-flow constraints. The first three
techniques have been supported by research tools for about a
decade, where modelers can draw hierarchical goal
decomposition in a tree diagram (QGOMS, [3]), program it
in a dedicated programming environment (GLEAN, [24]) or
even automatically generate most of the model simply by
demonstrating a task (CRITIQUE, [16]).
Unlike the first three GOMS methods, CPM-GOMS human
performance predictions are constructed from primitives that
include estimates of the time for the elementary cognitive,
motor, and perceptual operations. These primitives are
hypothesized to underlie actions such as typing a key or
moving a mouse. Much of the power of CPM-GOMS to
predict skilled behavior comes from its ability to model
overlapping actions by interleaving cognitive, perceptual, and
motor operators. Although it could be argued that CPM-
GOMS has been the most economically successful of the
GOMS methods (saving a telephone company $2 million per
year [15]), it has had no dedicated tool support to date.

Crafting CPM-GOMS Models by Hand
CPM-GOMS models have traditionally been expressed in
PERT charts, a representation familiar to project managers.
Every operator is represented as a box (a task) with a duration
(in milliseconds). If an operator must have information that is
the output of another operator, then it is said to be dependent
on that operator and must wait for it to complete before
starting itself. Likewise, if two operators use the same
processor of the MHP (e.g., cognitive processor, vision, or
the right hand), one must wait for the previous to complete
before starting. Thus, a CPM-GOMS model of a user’s task
consists of boxes with durations and dependency lines
between them. Figure 1 shows a model of a person carefully
moving a mouse to a target on the screen and clicking on that
target.

Figure 1: Model of carefully the cursor to a target and
clicking the mouse button (adapted from [11]).

Procedure for constructing a CPM-GOMS model with
MacProject
Models were created using MacProject, a project
management tool originally produced by Apple, improved by
Claris, and no longer commercially available. The key feature
of MacProject that made it possible for CPM-GOMS models
to be constructed is that pre-established patterns of operators
could be stored in a library file and then copy-and-pasted into
a new canvas, preserving all relevant information about the
patterns (e.g., duration, dependencies, position on the page).
These patterns, which we called “templates” [20], were of
commonly recurring task-level activities in HCI. Each
template was very short, some encompassed just a fraction of
a second and others were up to several seconds. Templates
exist for HCI tasks including typing, visually getting
information from a screen (with or without eye-movements),
pressing a single key, having a short conversation, etc. The
pattern shown in Figure 1 for selecting a target is an example
of a template.
To build a CPM-GOMS model, the modeler would start with
a hierarchical goal decomposition, usually in the form of a
CMN-GOMS model. This goal decomposition would
continue until the leaves formed a sequence of keystroke-
level activities necessary to complete the task. After
completing the goal decomposition, the modeler would
choose the templates that achieve the activities and copy and
paste them into a blank workspace. The modeler then drew
dependency lines between operators from adjoining templates
that use the same processor, i.e., from one template’s last
cognitive operator to the next template’s first cognitive
operator, etc. Since each template was on the order of a
second long, an interesting model would include scores of
templates and be comprised of hundreds of MHP-level
operators and their dependencies.
After copying the appropriate templates into the model, each
operator in each template had to be given a unique name to
allow the modeler to keep track of the model as they scrolled
through many screens of MacProject. Furthermore, the
modeler had to remember to fill in durations for some of the

initiate-move-
cursor

perceive-
target

290

0

attend-
target

50
initiate-

POG

50
verify-
target
pos

50

move-
cursor

182

POG

30

mouseDn
100

initiate-
mouseDn

50

mouseUp

100

new-cursor-location

perceive
cursor

@target

100

50
verify
cursor

@target

50
attend
cursor

@target

50

Paper: Controlling Complexity CHI changing the world, changing ourselves

148 Volume No. 4, Issue No. 1

operator-boxes because the actual duration of the operator
varied with the task situation. Many modelers, novice and
experienced alike, missed an operator or two in this step, an
error that propagates and exacerbates problems throughout
the rest of the modeling process.
After all templates are copied in, joined together serially, and
customized to the task being modeled, they form a complete
PERT chart for the task and MacProject displays the critical
path (longest path) for task. At this point, the activities
embodied in the templates are modeled as occurring in strict
sequence. CPM-GOMS gets it predictive power by breaking
the assumption of seriality thereby modeling the ability of
highly skilled people to think ahead to the next step while
completing the current step, essentially doing several things
in parallel. To get this effect in CPM-GOMS models, at every
juncture between two templates, the modeler had to consider
whether to literally break the dependency line drawn in
earlier, put an operator ahead of another operator, and
reconnect the dependency lines appropriately. A full set of
rules to dictate this step has never been articulated. The first
consideration was whether there was sufficient slack time in
the critical path to insert an operator belonging to a later
template between two operators of the current template.
However, deciding when it was appropriate to take advantage
of that slack time was more of a craft than an engineering
science, involving knowledge of the critical path, the task
being modeled, psychology, and intuition. Furthermore, the
breaking and reconnecting of scores of dependency lines also
usually resulted in some errors of omission, which greatly
affected the critical path of the final model.
Although a prose description does not do justice to the
procedure, the previous paragraphs attempt to convey that
crafting CPM-GOMS with MacProject was difficult, labor-
intensive, tedious and error-prone. Add to this the fact that
MacProject was not designed for tasks at the millisecond
level (the modeler had to work in minutes and do time
conversion and it did not have a big enough canvas for long
tasks) and the process was also frustrating. Even experienced
modelers would take hours to model each minute-long task
and then put the model away for a few days and revisit it with
“new eyes” to find the errors and inconsistencies. The
resulting accuracy of the models, their predictive power, and
the eventual clarity of presentation was worth the effort
through several projects, but the process was always painful.

Automatically Generating CPM-GOMS Models with Apex
Apex is a computational architecture used to model human
behavior in complex dynamic tasks. It incorporates a reactive
planner [8] providing capabilities that are a superset of those
needed to build GOMS models [11]. These capabilities
allowed us to map the concepts of CPM-GOMS to those of
Apex and implement CPM-GOMS models directly in Apex.

The Apex architecture
Resources. The Apex architecture includes the concept of
resources, which map directly to the MHP’s processors, and
hence to CPM-GOMS models. Resources operate serially

within themselves and are thereby occupied by a single task
for the duration of that task. Apex currently has memory,
vision, gaze, and right/left hand resources that map to the
MHP’s cognitive, perceptual, and motor processes. It also has
facilities for including more resources as needed by more
complex tasks. Apex allocates these resources and others to
the tasks it is attempting to execute.
Hierarchical goal decomposition. The hierarchical goal
structure of a GOMS model can be expressed in Apex with
its Procedure Description Language (PDL). In PDL, a
procedure (GOMS method) consists of a number of steps.
PDL steps are decomposed hierarchically into procedures of
simpler steps until those steps bottom out in primitive actions
(GOMS operators) that occupy resources. The decision to
perform a particular procedure is mediated by a selection
operator (GOMS selection rules). The PDL language is
similar to the implementation of NGOMSL in GLEAN [24].
However, PDL is closer in philosophy to CMN-GOMS in
that it assigns no time to goal manipulation, only the
execution of operators.
Step ordering. In PDL, steps can be assigned a strict serial
ordering (like CMN-GOMS or NGOMSL) by explicitly
setting the precondition of one step to be the completion of
the preceding step. However, the Apex architecture also
supports parallelism because if no explicit “waitfor”
precondition is assigned, steps can run in parallel (subject to
resource constraints). This default assumption of parallel
activity is essential to CPM-GOMS models. Apex has a third
possibility for ordering steps called priorities. In PDL, steps
can be assigned a priority. When the step contends for use of
a resource, its priority is compared to the priorities of other
steps also contending for the same resource, and the task with
the highest priority wins the resource. In terms of CPM-
GOMS, this allows a sort of soft ordering of templates; task
T2 should go after task T1 unless T1 is not using the resource
required by T2, in which case T2 can take it.
Time assignment. Primitive actions are assigned durations
that can be constants or a function of the environment. For
example, the mouseDn action in Figure 1 is assigned an
empirically determined value of 100 ms, while the move-
cursor action is assigned a time calculated by Fitts’s Law.
The overall time to run several such actions is calculated by
Apex, which takes into account when the actions start and
what actions may be running in parallel at any particular time.

Expressing CPM-GOMS Templates in PDL
CPM-GOMS templates can be straightforwardly expressed in
PDL. For example, the PERT chart template shown in Figure
1 is expressed in PDL in Figure 2. Each box (operator) in
Figure 1 is a step in PDL, labeled “c” for cognitive, “p” for
perceptual, and “m” for motor. Dependency lines that go
between rows are expressed as explicit “waitfors” in the PDL.
For example, the move-cursor motor operator (m1) waits for
the initiate-move-cursor cognitive operator (c1). Dependency
lines in a row of CPM-GOMS operators are implemented
at the next lower level below the code in Figure 2 where the

minneapolis, minnesota, usa • 20-25 april 2002 Paper: Controlling Complexity

Volume No. 4, Issue No. 1 149

 (procedure
 (index (slow-move-click ?target))
 (step c1 (initiate-move-cursor ?target))
 (step m1 (move-cursor ?target)
 (waitfor ?c1))
 (step c2 (attend-target ?target))
 (step c3 (initiate-eye-movement ?target)
 (waitfor ?c2))
 (step m2 (eye-movement ?target)
 (waitfor ?c3))
 (step p1 (perceive-target-complex ?target)
 (waitfor ?m2))
 (step c4 (verify-target-position ?target)
 (waitfor ?c3 ?p1))
 (step c5 (attend-cursor-at-target ?target)
 (waitfor ?c4))
 (step w1 (WORLD new-cursor-location ?target)
 (waitfor ?m1))
 (step p2 (perceive-cursor-at-target ?target)
 (waitfor ?p1 ?c5 ?w1))
 (step c6 (verify-cursor-at-target ?target)
 (waitfor ?c5 ?p2))
 (step c7 (initiate-click ?target)
 (waitfor ?c6 ?m1))
 (step m3 (mouse-down ?target)
 (waitfor ?m1 ?c7))
 (step m4 (mouse-up ?target)
 (waitfor ?m3))
 (step t1 (terminate)
 (waitfor ?m4)))
Figure 2. PDL code for the CPM-GOMS template shown in
Figure 1.

primitive operators are assigned to their resources. That is,
both the move-cursor operator and the mouse-down operator
are assign to the right-hand resource; since that resource can
only do one operator at a time a dependency emerges from
Apex’s architecture.
Notice in Figure 2 that neither c1 (initiate-move-cursor) nor c2
(attend-target) wait for the completion of any step in this
template. This is theoretically appropriate because when
selecting a target with a mouse a skilled user can start to point
before she starts to look at the target, or start to look before she
starts to point. The PDL code enforces no dependency between
these two cognitive operators; resource constraints will
automatically pick the most appropriate operator at run time.

Articulating CPM-GOMS Template Interleaving Rules
By attempting to express CPM-GOMS templates in PDL and
create a complete model of an HCI task, we were able to
articulate for the first time reliable rules for appropriately
interleaving CPM-GOMS operators. These rules depend on
templates like the one in Figure 2, where the operators
occupy resources assigned in PDL code below the level of the
template and inherit priorities from the goal decomposition
code above the template.
The details of how these rules work are beyond the scope of
this paper. However, roughly, they allow a momentarily free
resource to be seized by an operator from a lower-priority
template (i.e., later in the sequence) if no operator from a
higher-priority template is ready to request it. If the lower-
priority operator can complete before an operator from a
higher-priority template requests the resource, that lower-
priority operator has successfully interleaved. If it cannot

complete before the resource is requested, then it is
terminated and reset and it must re-compete for the resource
at its next opportunity.
The decision process about how to interleave is completely
different for the Apex architecture than for the human
modeler using MacProject. The modeler uses knowledge of
the entire timecourse of the task encoded in the critical path
of the PERT chart, while Apex makes it selections at runtime
with no foreknowledge of what other operators are waiting
for resources. Despite the differences in decision-making
mechanisms, the resulting Apex models interleave operators
just as MacProjects models do when created by experts in
CPM-GOMS.

Procedure for constructing a CPM-GOMS model with Apex
The first step in creating a CPM-GOMS model with Apex is
the same as doing it by hand: create a CMN-GOMS goal
decomposition. In Apex, this decomposition is formalized in
PDL code instead of just being jotted down on paper or being
typed into a word processor. As can be seen in Figure 3, the
syntax of PDL code is sufficiently lightweight that this
formalization is not a crushing burden.
Both methods depend on previously set-up templates of
reusable skills like pointing with a mouse or typing. These
reusable templates take the form of PERT charts when using
MacProject and PDL code when using Apex. These
templates are coded by researchers in cognitive modeling not
by system designers modeling a particular interface and task
set. Thus, the psychological science is “built in” to the
templates by experts in psychology and human modeling so
that they can be used easily by non-expert modelers. In
addition, in Apex, the psychologists also provide the lower-
level code assigning operators to actual and virtual resources,
which the modeler never need see.
When the PDL goal decomposition reaches the level of the
templates, they simply call the appropriate template as a step
in the PDL code. Next, the modeler runs the model using
Apex’s GUI, Sherpa (Figure 3). By default, Sherpa produces
a textual trace of the model, showing the time when each
operator starts and completes. However, at the press of a
button, Sherpa converts that trace into a PERT chart. The
resulting PERT chart contains all the operators, their
durations, and their dependencies without any further input
from the modeler. No bookkeeping, no deleting or drawing
dependency lines, no difficult thinking about interleaving.
In addition, Sherpa has some helpful features tailored to the
needs of CPM-GOMS modeling. For instance, the PERT
chart can be shrunk horizontally to see patterns within the
model or stretched to zoom in on the information in particular
operators. It can be toggled to either display in standard
PERT chart view where the width of each box is determined
only by how much text must fit into it, or to a view where the
width of the box is proportional to the time it occupies a

Paper: Controlling Complexity CHI changing the world, changing ourselves

150 Volume No. 4, Issue No. 1

Figure 3: PDL code expressing the CPM-GOMS model can be run in Sherpa and automatically rendered as a PERT chart.

Figure 3:

(procedure
 (index (do banking))
 (step s1 (initiate session) (priority 300))
 (step s2 (do transaction) (priority 200))
 (step s3 (end session) (priority 100))
 (step t (terminate) (waitfor ?s3 ?s2 ?s1)))

(procedure
 (index (do transaction))
 (step s1 (choose withdraw) (priority 240))
 (step s2 (choose account) (priority 230))
 (step s3 (enter amount) (priority 220))
 (step s4 (retrieve money) (priority 210))
 (step s5 (terminate) (waitfor ?s4 ?s3 ?s2
?s1)))

(procedure
 (index (enter amount))
 (step s1 (enter-number 8-key) (priority
223))
 (step s2 (enter-number 0-key) (priority
222))
 (step s3 (enter-CORRECT) (priority 221))
 (step s4 (terminate)
(waitfor ?s2 ?s1 ?s3)))

(procedure
 (index (enter-number ?number))
 (step s1 (fast-move-click ?number))
 (step s2 (terminate) (waitfor ?s1)))

 RUN

PERT CHART

minneapolis, minnesota, usa • 20-25 april 2002 Paper: Controlling Complexity

Volume No. 4, Issue No. 1 151

resource (for short duration operators, a click will reveal the
information that cannot be fully presented). Sherpa charts can
be arbitrarily long to accommodate lengthy models. Finally,
Sherpa automatically colors the operators from each template
a distinct hue so interleaved operators visually pop out at the
modeler. (These hues were specifically selected to also print
distinctively in black & white, so some pop-out is visible in
Figure 3.)

EXPERIENCE USING APEX FOR CPM-GOMS MODELING
We have used Apex to create a CPM-GOMS model for a
simple HCI task, withdrawing money from an ATM. We ran
two users through the same task, practicing them extensively
because CPM-GOMS models are expected to predict the
performance of highly-skilled users [1].

The Task
The task was to withdraw $80 from the checking account on a
Visual Basic mock-up of an Automated Teller Machine
(ATM). This ATM task allowed us to collect keystroke-level
data with which to evaluate the automatically-generated
models. Data at this level was never collected for most
previously-published CPM-GOMS tasks [7, 19, 20], or was
archived in an inaccessible form [1]. Moreover, using a
mouse-based point-and-click task allowed us to borrow
CPM-GOMS templates constructed by Gray and Boehm-
Davis [14] with little modification.
To collect keystroke-level data, users performed actions on
the ATM by using a mouse to click on simulated keys or
slots. They were instructed to perform the following steps to
satisfy the goal of withdrawing $80:

Insert card (click on the picture of the card slot)
Enter PIN (click on the 4, 9, 0, and 1 buttons in turn)
Press OK (click on OK button)
Select transaction type (click on withdraw button)
Select account (click on checking button)
Enter amount (click on 8 and 0 buttons)
Press if correct/not correct? (click on correct button)
Take cash (click on the picture of the cash slot)
Answer question about wanting another transaction

(click on No button)
Take card (click on the picture of the card slot)
Take receipt (click on the picture of the cash slot)

The users performed this task without deviation 100 times.
This level of practice mimics that used by both Card Moran
and Newell [6] in a text-editing task and Baskin and John [1]
in a CAD drawing task when they explored the effects of
extensive practice on match to various GOMS models.

The Apex CPM-GOMS Model
The CPM-GOMS model was constructed by expressing the
goal decomposition in PDL (see Figure 3). The
decomposition continued until the steps were the names of
two CPM-GOMS templates: Slow-Move-Click, and Fast-
Move-Click. The underlying cognitive, perceptual, and motor
operators for these two templates were taken directly from

Gray & Boehm-Davis [14] where those researchers matched
these CPM-GOMS models to data from several variations of
a target selection task. The Slow-Move-Click template is
shown in PERT chart form in Figure 1 and in PDL in Figure
2. Portions of two Fast-Move-Click templates are shown
interleaved in the generated PERT chart in Figure 3. For Gray
and Boehm-Davis, Slow-Move-Click represents a careful
selection of a visible target because there was uncertainty
about where the target would appear in each trial. Fast-Move-
Click represents a more confident selection of a stationary
target when the user knows where that target lies. In our
model we chose to use Fast-Move-Click for clicking on the
buttons because they were stationary and of reasonable size.
We chose to use Slow-Move-Click for clicking on the card
and cash slots because these slots were represented in Visual
Basic as only being a few pixels wide and were difficult to hit
unless the user was exerting special care.
The 10-1/2 seconds of behavior required to withdraw cash
was comprised of 15 templates, about 180 cognitive,
perceptual, and motor operators. Fifty-three of these
operators interleave, that is, they begin before all the
operators in the template that precedes them are completed.
All parameters in the models were set a priori from prior
research, without reference to the collected data.

Comparing the Model to Data
Figure 4 shows a comparison of the CPM-GOMS predictions
and the mean times of the error-free trials from 91 to 100 for
each user. As is apparent from Figure 4, the fits to the data
are quite good. The average absolute difference between
model predictions and observed data was only 80 ms and the
absolute average percent error was 13%. This fit required no
parameters to be set with reference to the data. This adds
support to the finding that CPM-GOMS models predict
behavior well at around the 100th trial of a practiced
procedure [1].

0

200

400

600

800

1000

1200

1400

C
a
r
d

S
l
o
t

4 9 0 1

O
K

W
i
t
h
d
r
a
w

C
h
e
c
k
i
n
g 8 0

C
o
r
r
e
c
t

C
a
s
h

S
l
o
t

N
o

C
a
r
d

S
l
o
t

C
a
s
h

S
l
o
t

T
i
m
e

(
m
s
)

S1

S2

Model

Figure 4: Model predictions and user results

Paper: Controlling Complexity CHI changing the world, changing ourselves

152 Volume No. 4, Issue No. 1

CONCLUSIONS AND FUTURE WORK
Using Apex has allowed us to uncover regularities in CPM-
GOMS models that were previously unknown. We leveraged
these regularities by expressing them in the Apex architecture
such that CPM-GOMS models can be automatically
generated from a higher-level goal decomposition and low-
level templates of primitive HCI behavior like moving a
mouse and typing. The resulting zero-parameter model we
created for an ATM task fit the data very well.
In order for computational cognitive modeling to come into
wider use in the design process, it is necessary to make the
production of models easier and more valid than it has been
in the past. We believe that packaging the abundance of data
on human perceptual, cognitive, and motor phenomena into a
set of behavioral primitives (templates) that can be directly
incorporated into predictive, computational models is a
promising way to proceed. Templates reduce the amount of
psychological and methodological knowledge required to
build models, which allows the modeler to focus on the task
analysis instead of low-level psychological theories.
Promising as these results are, additional work needs to be
done. For example, we need to demonstrate the power of
building CPM-GOMS models in Apex by producing many
more of them. In particular, the user actions in the ATM task
are too sequential to show substantial parallelism and
interleaving, which is the unique strength of CPM-GOMS
models. To remedy this deficit, we plan first to reproduce
existing successes of CPM-GOMS models [1, 7, 14, 15, 19]
to demonstrate the expressive power of Apex. This effort will
also allow us to compare previously-published, hand-
constructed models with Apex-generated models to better
understand the operation and implications of automatic
generation. We then plan to extend beyond previously
modeled tasks to more complex tasks like air traffic control.
In order to accomplish this first goal, we will have to add
several more templates to the library already containing slow-
move-click and fast-move-click. For instance, to reproduce
the models of drawing in CAD, we will add a typing template
and several other variations of moving and clicking a mouse
(e.g., with a snapping and/or changing cursor and chorded
mouse-button clicks). Every template added to the library
increases the usefulness of Apex for CPM-GOMS modeling
[12].
We will continue to develop Apex as a tool, making it robust,
fast, and usable in the context of predictive modeling for
system design. In addition, we will add libraries of templates,
documented examples, and documentation.

ACKNOWLEDGMENTS
We would like to thank Michael Dalal and Robert Harris for
their efforts on the Apex project. This research was supported
in part by the NASA Intelligent Systems Program, the NASA
Aviation Operations Systems Program and by NASA Award
#NAG2-1472.

REFERENCES
1. Baskin, J. D., and John, B. E. (1998). Comparison of

GOMS Analysis Methods. Proceedings of ACM CHI'98
Conference on Human Factors in Computing System
(Summary) 1998 v.2 p.261-262.

2. Baumeister, L. K., John, B. E., Byrne, M. D. (2000). A
Comparison of Tools for Building GOMS Models. In
Proceedings of ACM CHI2000 Conference on Human
Factors in Computing Systems, v.1 p.502-509.

3. Beard, David V., Smith, Dana K. & Denelsbeck, Kevin
M. (1996). Quick and Dirty GOMS: A Case Study of
Computed Tomography, Human-Computer Interaction,
11 (2) p.157-180.

4. Byrne, M. D., Wood, S. D., Sukaviriya, P. N., Foley, J.
D. & Kieras, D. (1994). Automating Interface
Evaluation, Proceedings of ACM CHI'94 Conference on
Human Factors in Computing Systems, B. Adelson, S.
Dumais, & J. Olson (Eds.), v.1, pp. 232-237. New York:
ACM Press.

5. Card, S.K., Moran, T. P., & Newell, A. (1980). The
keystroke-level model for user performance with
interactive systems. Communications of the ACM, 23,
396-410.

6. Card, S. K., Moran, T.P. & Newell, A. (1983). The
Psychology of Human-Computer Interaction. Hillsdale,
NJ: Lawrence Erlbaum Associates.

7. Chuah, M. C., John, B. E., & Pane, J. (1994). Analyzing
graphic and textual layouts with GOMS: Results of a
preliminary analysis. In Proceedings Companion of CHI,
1994, (Boston, MA, USA, April 24-28, 1994). New
York: ACM, pp. 323-324.

8. Firby, R. J. (1989). Adaptive Execution in Complex
Dynamic Worlds. Ph.D. thesis, Yale University,
Computer Science Department. Technical Report 672.

9. Freed, M. (1998a) Managing multiple tasks in complex,
dynamic environments. In Proceedings of 15th National
Conference on Artificial Intelligence, (Madison,
Wisconsin,) Menlo Park, CA: AAAI Press/ MIT Press.
pp. 921-927.

10. Freed, M. (1998b) Simulating Human Performance in
Complex, Dynamic Environments. Doctoral
Dissertation, Northwestern University.

11. Freed, M. & Remington, R. (2000a) GOMS, GOMS+
and PDL. In Working Notes of the AAAI Fall Symposium
on Simulating Human Agents. Falmouth, Massachusetts.

12. Freed, M. & Remington, R. (2000b) Making human-
machine system simulation a practical engineering tool:
An Apex overview. In Proceedings of the Third
International Conference on Cognitive Modeling.
Veenendaal, The Netherlands: Universal Press. pp. 110-
117.

minneapolis, minnesota, usa • 20-25 april 2002 Paper: Controlling Complexity

Volume No. 4, Issue No. 1 153

13. Gong, R. & Kieras, D. (1994). A Validation of the
GOMS Model Methodology in the Development of a
Specialized, Commercial Software Application,
Proceedings of CHI, 1994, New York: ACM Press, pp.
351-357.

14. Gray, W. D., & Boehm-Davis, D. A. (2000).
Milliseconds matter: An introduction to microstrategies
and to their use in describing and predicting interactive
behavior. Journal of Experimental Psychology: Applied,
6(4), 322-335.

15. Gray, W. D., John, B. E. & Atwood, M. E. (1993)
Project Ernestine: Validating a GOMS Analysis for
Predicting and Explaining Real-World Task
Performance, Human-Computer Interaction, 8 (3), pp.
237-309.

16. Hudson, S.E., John, B.E., Knudsen, K., & Byrne, M. D.
(1999). A Tool for Creating Predictive Performance
Models from User Interface Demonstrations.
Proceedings of the ACM Symposium on User Interface
Software and Technology, p.93-102

17. John, B. E. (1988) Contributions to Engineering Models
of human-computer interaction. Ph.D. Thesis. Carnegie
Mellon University.

18. John, B. E. (1990) Extensions of GOMS analyses to
expert performance requiring perception of dynamic
visual and auditory information. In proceedings of CHI,
1990 (Seattle, Washington, April 30-May 4, 1990)
ACM, New York, 107-115.

19. John, B. E. (1996) TYPIST: A Theory of Performance
In Skilled Typing. Human-Computer Interaction , 11
(4), pp.321-355.

20. John, B. E. & Gray, W. D. GOMS Analyses for Parallel
Activities. Tutorial materials, presented at CHI, 1992
(Monterey, California, May 3- May 7, 1992), CHI, 1994
(Boston MA, April 24-28, 1994) and CHI, 1995 (Denver
CO, May 7-11, 1995) ACM, New York.

21. John, B. E. & Kieras, D. E. (1996a). The GOMS family
of user interface analysis techniques: Comparison and
Contrast, ACM Transactions on Computer-Human
Interaction, 3 (4), pp. 320-351.

22. John, B. E. & Kieras, D. E. (1996b) Using GOMS for
user interface design and evaluation: Which technique?,
ACM Transactions on Computer-Human Interaction, 3
(4), pp. 287-319.

23. Kieras, D. E. (1996) Guide to GOMS model usability
evaluations using NGOMSL, The Handbook of Human-

Computer Interaction, M. Helander and T.Landauer
(Eds.), 2nd ed. North-Holland Amsterdam.

24. Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A.
(1995). GLEAN: A Computer-Based Tool for Rapid
GOMS Model Usability Evaluation of User Interface
Designs. International Journal of Man-Machine Studies,
22, 365-394.

25. Kitajima, M. & Polson, P. G. (1995) A comprehension-
based model of correct performance and errors in skilled,
display-based, human-computer interaction.
International Journal of Human-Computer Studies,
43(1):65-99.

26. Kosbie, D. S. & John, B. E. (1994). Hierarchical Event
Histories and GOMS, Poster at the Human-Computer
Interaction Consortium Winter Workshop (January,
1994, Frasier, Colorado.)

27. Lee, Adrienne Y., Polson, Peter G. & Bailey, Wayne A.
(1989). Learning and Transfer of Measurement Tasks
Performing Prediction: Predicting Performance,
Proceedings of ACM CHI'89 Conference on Human
Factors in Computing Systems, p.115-120.

28. Lerch, F. J., Mantei, M. M. & Olson, J. R. (1989).
Translating Ideas into Action: Cognitive Analysis of
Errors in Spreadsheet Formulas, Proceedings of ACM
CHI'89 Conference on Human Factors in Computing
System, pp. 121-126. New York: ACM.

29. Pirolli, P. and Card, S. K. (1999). Information foraging.
Psychological Review, 106, 643-675.

30. Williams, K. E. (1993) Automating the cognitive task
modeling process: An extension to GOMS for HCI. In
Proceedings of the Fifth International Conference on
Human-Computer Interaction Poster Sessions: Abridged
Proceedings (vol 3. p. 182).

31. Young, R. M., Green, T. R. G., & Simon, T. (1989)
Programmable user models for predictive evaluation of
interface designs. In J. C. Chew & J. Whiteside (Eds)
Proceedings of ACM CHI'89 Conference on Human
Factors in Computing Systems, 15-19. ACM Press.

32. Young, R. M. & Wittington, J. E. (1990) Using a
knowledge analysis to predict conceptual errors in text-
editor usage. In J. C. Chew & J. Whiteside (Eds)
Proceedings of ACM CHI'90 Conference on Human
Factors in Computing System, 91-97. ACM Press.

Paper: Controlling Complexity CHI changing the world, changing ourselves

154 Volume No. 4, Issue No. 1

