

Leveraging Open-Source Software in
the Design and Development Process

Abstract

This paper presents a case study of the NASA Ames

Research Center HCI Group’s design and development

of a problem reporting system for NASA’s next

generation vehicle (to replace the shuttle) based on the

adaptation of an open source software application. We

focus on the criteria used for selecting a specific system

(Bugzilla) and discuss the outcomes of our project

including eventual extensibility and maintainability.

Finally, we address whether our experience may

generalize considering where Bugzilla lies in the larger

quantitative picture of current open source software

projects.

Keywords

Open-source software, software development,

collaboration, benefits analysis.

ACM Classification Keywords

D.2.13 [Software Engineering]: reusable software,

reuse models; H.5.2 [Information Interfaces and

Representation]: prototyping, user-centered design;

K.5.1 [Legal Aspects of Computing]: licensing.

Introduction

The National Aeronautics and Space Administration

(NASA) Constellation Program will span more than 30

years and will include manned missions to Earth orbit,

the International Space Station, the Moon, and Mars.

Constellation will replace NASA’s aging Space Shuttle

program over the next decade. Managing risk, including

Copyright is held by the author/owner(s).

CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA

ACM 978-1-60558-247-4/09/04.

Collin Green

NASA Ames Research Center

M/S 262-4

Moffett Field, CA 94035 USA

collin.b.green@nasa.gov

Irene Tollinger

NASA Ames Research Center

M/S 262-4

Moffett Field, CA 94035 USA

irene.tollinger@nasa.gov

Christian Ratterman

NASA Ames Research Center

M/S 262-4

Moffett Field, CA 94035 USA

christian.d.ratterman@nasa.gov

Guy Pyrzak

NASA Ames Research Center

M/S 262-4

Moffett Field, CA 94035 USA

guy.pyrzak@nasa.gov

Alex Eiser

NASA Ames Research Center

M/S 262-4

Moffett Field, CA 94035 USA

alex.eiser@nasa.gov

Lanie Castro

NASA Ames Research Center

M/S 262-4

Moffett Field, CA 94035 USA

lanie.b.castro@nasa.gov

Alonso Vera

NASA Ames Research Center

M/S 262-4

Moffett Field, CA 94035 USA

alonso.vera@nasa.gov

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3061

having an understanding of current and historical

problems is critical to mission success from the very

outset. Throughout each mission, problems may

endanger the lives of the crew and support staff,

compromise mission objectives, or result in costly and

time-consuming repairs. Preventing even one small

problem can save time, money, and lives.

Our Human-Computer Interaction (HCI) Group was

charged with developing a new Problem Reporting,

Analysis, and Corrective Action System for the

Constellation Program (CxPRACA). CxPRACA is intended

to capture and store program-wide data on engineering

problems and non-conformances so that problems can

be understood (and any related risks can be mitigated).

We begin with a brief overview of the composition of

our HCI group and some additional details about the

context and domain of our project. Subsequently, we

present a case study of our design and development of

the CxPRACA system for NASA based on adaptation of

the Bugzilla [3] open source bug tracker, including

criteria we used to determine whether Bugzilla was a

good candidate for this adaptation. We discuss, from an

HCI and technical perspective, some of the tradeoffs

involved in taking this approach, and also consider

whether our experience is generalizable considering

where Bugzilla lies in the larger quantitative picture of

the current open source software (OSS) community.

A Software Development Challenge at NASA

The NASA Ames Research Center HCI Group

How can an HCI Group, working for a large government

agency, have enough development capacity to bring

their methods to bear on major mission systems? One

way is to pair-up with a development group. The HCI

Group does the requirements analysis, understanding

the functional requirements based on acquiring domain

expertise and the development team executes on those

requirements. This is perhaps the more typical model in

industry. It has been our experience that, although

sometimes successful, it can also be the case that user

requirements get pushed to the background by the

software development team, focusing first on technical

capabilities of the software. This produces software that

fails to meet user needs and the product as a whole

fails. Our aim in this effort was to have the HCI Group

take control of, and responsibility for, the software

development process while at the same time not

becoming a development team disguised as an HCI

team.

The HCI Group at NASA Ames is composed largely of

HCI-trained people, along with a few developers and

testers. The group has seventeen people out of which

approximately five contribute to software process

management, development and testing. It was

therefore clear that we either had to hire a large

number of developers or start from an existing

application that would allow evolution by a small group

of developers. HCI and usability groups in industry

often operate as “guns for hire”. Members of the group

get deployed to development teams to contribute user

requirements, interface designs, and end-user

assessment. On the other hand, some companies,

especially those that are not in the business of software

development (e.g., in the financial and medical

industries) have HCI people tasked with developing

systems, often for internal use. It is to these sorts of

applications that this case study should be particularly

relevant.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3062

Project Overview

The CxPRACA system we were asked to develop was a

large, NASA-wide database-driven application. It would

eventually have thousands of users and millions of

records and need to evolve over the 30+ year planned

lifecycle of the Constellation Program. It needed to be

platform-independent and available to all ten NASA

centers and to NASA contractors as well. The

application domain can be characterized, most broadly,

as engineering risk and safety management. The

system holds information about software and hardware

non-conformances. The system must support email,

search, reporting, and change history tracking in

addition to basic relational database functions. The

CxPRACA system must also be very robust: it is

important to in-flight mission operations and therefore

requires 24/7/365 availability and must be highly

secure (much of the data come to the government from

private contractors and so are competitively sensitive

and/or proprietary).

Adapting OSS for a NASA Application

Establishing System Requirements

Initially, our group conducted field research on problem

reporting, focusing on both processes and systems,

using contextual inquiry techniques [2]. The research

covered existing NASA systems (at multiple centers)

and systems used by the United States Navy, the

Department of Energy (at nuclear power plants), and

private corporations. Overall, the HCI Group spent over

a year conducting user research to understand the

requirements for the CxPRACA system before beginning

to consider a technical solution (i.e., selection of a

system).

The research identified three key problems:

! DATA FRAGMENTATION There existed many isolated

PRACA systems with inconsistent data schemas (50+

on shuttle alone) resulting in poor support for

search/trending.

! DATA INTEGRITY Information in PRACA systems was

often incomplete due to records being entered after the

analysis was complete. This, in turn, was due to a lack

of support in the software tools for the tactical aspects

of the work.

! DATA INTEGRATION Information in related (non-

PRACA) systems was inaccessible. Data related to

problem reporting (e.g., part numbers, part assemblies,

engineering diagrams, etc.) was fragmented,

incomplete and stored in disconnected systems such

that data could not be associated with problem reports

as required.

Mishap investigations of the Challenger explosion and

the loss of Columbia called legacy PRACA systems

dysfunctional and highlighted the need for a single,

program-wide data set. Thus, software requirements

for a new PRACA system developed to address these

and many other issues were an Agency-wide priority.

The HCI Group’s task was to propose a software

application that would meet key requirements and be

available for production use within a short timeframe.

The team looked at a number of tools with the goal of

finding a system that: 1) met the basic functional

requirements that emerged from the key problems

observed (i.e., had an analogous domain/usage

model); 2) had sufficient configurability and

extensibility to support tailoring across NASA centers;

3) was robust enough for large-scale production use, 4)

was modifiable by NASA; 5) could be hosted on NASA

hardware.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3063

Open-Source Software and HCI

OSS has periodically been mentioned in the HCI

literature, (e.g., [5] and [8]). However, it has primarily

been discussed in the context of attempts to provide

design work or design guidelines and though some

authors have encouraged the HCI community to

contribute to OSS projects, such collaboration has

proven difficult in practice [1, 12].

There are at least three reasons for this difficulty. First,

and most obviously, the OSS developer culture places

value in the functionality of code more than in

interaction design. Second, applying design to a project

comprehensively is best completed prior to the start of

development [8, 9]. OSS projects tend to be developed

piecemeal by independent contributors, so

comprehensive design efforts do not fit the

development process well. Third, the tools used by OSS

communities do not support usability work particularly

well. For example, typical bug tracking applications and

code-centric version-tracking systems do not offer

users the ability to capture complex design ideas and

discussions [14]. These facts have been somewhat

discouraging to the HCI practitioner interested in

working with OSS.

It was not our primary goal to improve the usability of

any individual OSS project, nor did we seek to change

the culture or tools used in the OSS community.

Instead, our goal was to design and develop software

more efficiently to suit NASA’s needs by taking

advantage of OSS as it currently exists. One way to

incorporate OSS code into software development is to

start with an OSS components-based framework, such

as Java Eclipse, and build up a new application from

these components. Another way is to adapt an already-

built application that contains the features desired in

the new application. In both cases, code reuse is

intended to improve efficiency but the latter approach

maximizes the amount of reused and shared code.

Starting from components offers more flexibility but

higher development cost because more code needs to

be created. Starting from an existing application offers

less flexibility but keeps costs lower.

However, starting from an existing system can offer

more flexibility than one might imagine. Since the

1970s, software engineers have increasingly focused on

modularity as a means to reduce the cost of changes

and improve product quality [11]. Improvements in

language structure and architectural conventions have

lead to practices in modern software development that

are focused on modularity of design. Considering these

points (and other factors, as detailed below), we opted

to adapt an already-built OSS project as the basis of

our CxPRACA system.

Key Aspects of OSS System Selection

BASIC FUNCTIONAL REQUIREMENTS: ANALOGOUS DOMAIN

The HCI team had the view that problem tracking was

not a NASA-unique domain. Any company that

developed hardware or software would require a

closed-loop system for capturing and resolving

problems (from auto-makers to software companies).

This drove us to look closely at analogous domains such

as bug-tracking systems.

Though differences exist, software bug tracking and

engineering problem reporting are clearly analogous.

For both activities, a problem is reported and stored in

a digital system so that the information can be shared

with a community. In both cases, a plan for solving the

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3064

problem is collaboratively built and documented in the

system. In addition, both types of systems allow work

to be assigned, tracked, and its completion recorded

digitally. In the long term, the records in both systems

act as a historic account that can support the solution

of new bugs/problems or analyzing and refining

development and testing processes. This similarity was

an important aspect of our decision.

We identified Bugzilla—an OSS bug tracker managed by

the Mozilla Foundation—as a system that included the

basic functionality needed for the CxPRACA system. The

match between our required functionality for CxPRACA

and that offered by Bugzilla was one important factor in

our initial selection of Bugzilla.

We discuss below the other factors we considered:

Bugzilla’s configurability and extensibility, which

supported rapid development; Bugzilla’s robustness;

and finally, Bugzilla’s OSS license allowing modification

of the code as much as needed.

CONFIGURABILITY AND EXTENSIBILITY

We define configurability as an application’s built-in

support for a user or administrator to make changes to

the application (defaults, layouts, data captured, etc.)

without any changes to code. Bugzilla had recently

been augmented, by OSS developers, to support

administrator-managed custom fields that can be added

without manipulating the code and or doing manual

database updates. Our team was able to configure the

Bugzilla data-entry interface to support five times more

data fields than are available in the standard Bugzilla

install. This feature of Bugzilla was critical to our rapid

and successful deployment of the initial CxPRACA

system.

We define extensibility as support for development of

new application features. We focus on two aspects of

extensibility: abstraction of UI code from backend code

and architecture. The abstraction of the UI and backend

allowed us to make changes in one area without

creating ripples and introducing bugs in the other. On

the UI side, Bugzilla includes substantial support for

skins and templates. In fact, the initial round of

development focused on changes to the template files

that control layout and visualization. The underlying

data management layers and program logic layers

remained largely untouched. Later, we added backend

features including: new data field types, full text

search, server-side data validation (e.g., user names,

dates), and other improvements.

In terms of architectural extensibility, based on a

documented API and a plug-in architecture, Bugzilla

was actually sub-optimal. Bugzilla does have a

documented API but does not fully support a plug-in

architecture. This was a substantial negative feature of

Bugzilla from our perspective as it meant that it was

likely to cost more time to merge future versions of

Bugzilla with the CxPRACA code. As discussed later in

the Project Outcome Section, close collaboration with

the OSS community, including contribution of code

back to Bugzilla, has allowed us to deal with this issue.

Overall, the ease with which Bugzilla can be modified

(through re-skinning, through parameter definition, and

through administrator control of data schema and work

processes) was important and allowed us to make

relatively few code changes initially such that a

production system could be deployed quickly.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3065

ROBUSTNESS

Robustness is the result of many different practices by

a development group, whether in industry or the OSS

community, from code reviews to comprehensive

quality-assurance testing. We found that the QA

processes the community follows lead to an overall

quality level sufficient to make us confident that we

would be able to spend our time improving its usability

and capabilities rather than fixing bugs in the

underlying code. This early impression has been borne

out over the course of the almost two-year effort.

MODIFIABILITY

We define modifiability as the ability to access and

change the application’s code. Modifiability by NASA

was one factor that pushed us toward the analysis of

OSS applications. Depending on the tool, vendor

provided software or Commercial Off-The-Shelf (COTS)

tools usually have one of the following models of code

control: 1) all code is only modifiable by the vendor, 2)

part of the code is only modifiable by the vendor, 3)

the code is source-available and can be modified. The

applications in category three were mostly open source

applications. We will talk in the Project Outcome

Section below about how we were able to limit merging

of features back into future releases based on the

transparency of the OSS development process.

Related to modifiability, maintaining data on NASA

servers is important from a data integrity and security

perspective. There were tools that met many of the

other criteria but not this one (e.g., the Google Base

application which was closely tied to Google

infrastructure and could not be hosted by NASA).

Through our analysis of the five above factors, we

discovered two additional areas that turned out to be

important. One was the accessibility of an active OSS

development community and the other was the

particular tool used to do distributed versioning by the

community.

ACCESSIBILITY OF ACTIVE OSS DEVELOPERS

Bugzilla’s technical community is large for an OSS

project. There were twelve active OSS developers

working on Bugzilla, and the project’s website listed

over thirty companies (independent of the Mozilla

Project) providing support, administration, hosting, and

configuration/development for Bugzilla.

While we anticipated most of our development to be UI

modifications, a proportion of our initial version did

include new or modified features that required more

extensive changes to Bugzilla (that proportion has

increased in subsequent versions). Contact with an OSS

developer proved very valuable. We retained the help

of a senior Bugzilla developer to help us modify the

Bugzilla backend for early versions of CxPRACA.

Contact with an OSS developer also helped us return

some of our development work to the OSS community

for inclusion in standard releases (and for

maintenance).

DISTRIBUTED VERSION CONTROL SCHEME

One important factor in the smooth adaptation of

Bugzilla was not inherent in the code itself, but rather

was a feature of the Bugzilla developer community.

Their preferred version tracking tools were compatible

with development of independent (branched) versions

of Bugzilla.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3066

OSS projects promote a very open, flexible

organizational development structure and as a result

tend to employ robust version control systems. While a

traditional version control system (e.g., CVS) allows a

team to concurrently code the same application and

commit to a code base without collisions or broken

code, such systems lack the ability to manage code

from diverse and distributed independent codebases

(as with OSS). Bugzilla uses an open-source version

control system called Bazaar that can automate the

merging of code from separate, previously branched

code bases.

This model allowed our team to continue development

of a separate version in multiple stages and to maintain

control of our release schedule. The use of Bazaar

(rather than a traditional version control system)

allowed us to gain from (and contribute back to) the

work of the larger Bugzilla community while

maintaining our own (faster) development cycle.

Project Outcome

Bugzilla was selected as the base application for

CxPRACA in October 2006 and Version 1.0 was released

in January 2007. Over the next few months the team

worked with the user community to demonstrate

capabilities, gather feedback, work on refining the

system, and explore new features. In May 2007, the

first center to use the system was identified, Langley

Research Center. In August 2007, the first users began

entering records into the system. Since then the

following centers have adopted the system as well:

Dryden Flight Research Center, Kennedy Space Center,

Glenn Flight Research Center. More locations and

groups will start to use the system as more

Constellation hardware goes into manufacture and test.

CxPRACA will eventually have thousands of users and

millions of records.

All the development work, including four major releases

(January 2007, July 2007, December 2007, June 2008)

has been accomplished in less than two years with two

and later three developers. Each release is observed in

context and usability tested with novice and

experienced participants. While we identify additional

usability issues for subsequent iterations, user feedback

has generally been very positive and helpdesk call

volume has been low (less than one per week).

In the end, the implementation of the CxPRACA system

has turned out to be substantially different from the

Bugzilla base from which we started. Beyond the UI

and usability improvements, we implemented some

substantial changes including: 1) improvements to

search, 2) new field types (e.g., long text fields), 3)

generalization of Bugzilla “core” fields (e.g., OS,

platform, etc.), 4) extended capabilities to link data

(between systems, records, and within a record), 5)

new data structures (e.g., to support capture of

multiple groups of fields on a single record).

Some features, such as search, field types, and

generalization of core fields were incorporated back into

the Bugzilla code base and are now maintained by the

Bugzilla OSS community. Also, the HCI Group

contributed back the user-research in the form of code

for those features. Once a new version of Bugzilla is

released, new (NASA-developed) features, now

embedded in Bugzilla, will replace the CxPRACA

implementation of them. Lastly, there are certain

features, such as the new data structure for capturing

multiple groups of fields on a record, which do not map

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3067

well onto the bug-tracking domain and will be

maintained directly by NASA. We have worked to stay

aligned with Bugzilla and have managed to limit

divergence such that approximately 90% of our

application’s code is core Bugzilla and only 10% is

NASA-maintained (see Figure 1).

Figure 1. Although CxPRACA as a whole is not open source,

some of the code developed by NASA for CxPRACA has been

open-sourced and released as part of core Bugzilla under the

Mozilla public license.

A significant advantage of having used OSS is that our

team can leverage new versions and updates without

much development work. After our adoption of Bugzilla,

new versions have provided significant features (e.g., a

fully customizable workflow) that CxPRACA required

and the HCI Group did not have to implement. We are

seeking to maximize the likelihood of seamless

integration of CxPRACA with new versions of Bugzilla.

Our team has actively engaged with the larger Bugzilla

community. We contribute developer time to bug

reporting, bug fixes, and feature implementation in the

core Bugzilla codebase. This improves our developers’

knowledge of the system and increases their standing

in the community. Although this strategy will cost

development resources, it will reduce the cost of

maintenance and new feature development for our

project.

An unanticipated outcome of the successful

development of a NASA-wide PRACA system was the

request from Constellation management to explore the

possibility of developing other systems using the same

code base. Over the past year, this has in the design

and development of three other systems involved in

risk management of space missions. 1) A Hazard

Analysis database that catalogues antecedent

understanding of potential hazards in both hardware

and software. 2) A Failure Mode Effects Analysis

System that captures predictive analyses of how

software and hardware can fail, especially as complex

systems are integrated. 3) A database that captures

information from each mandatory inspection that the

government carries out of contractor development

activity. For each of these systems, the NASA Ames

HCI Group conducted an analysis of user requirements

and determined that, with minor extensions, the

functionality of the Bugzilla-based code could support

the requirements. Critically, this could be done without

branching the code base (now underlying four

systems), as this would have significantly increased the

development cost.

In the past few months, the HCI Group has received

numerous requests to use the system outside of the

Constellation program. The International Space Station

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3068

program has approved a migration of two systems to

the Bugzilla-based solution by February 2009.

Additionally, the Space Shuttle Orbiter Project will be

synchronizing data from existing systems each night to

take advantage of superior search and trending

capabilities by November 2008. These are significant

achievements in that the system will go from

supporting the nascent Constellation program to

supporting operational vehicles carrying human crews

24 hours a day, 7 days a week (in the case of ISS).

Is Bugzilla a Special Case?

With few developer resources, we successfully adapted

Bugzilla as the basis for our CxPRACA system. A

number of features of Bugzilla (detailed above)

contributed to this success. Would other OSS projects

be amenable to such adaptation? Can our experience

serve as a model for other HCI practitioners or is

Bugzilla unique among OSS projects? In this section,

we consider whether Bugzilla may be a special case

within the space of OSS projects by looking at that

space as a whole and placing Bugzilla into context.

The Current State of OSS and the OSS Community

As a prominent aggregator of OSS projects,

SourceForge [13] has been analyzed by studies

focusing on a variety of HCI topics [4, 7]. However,

specific limitations of that data set have been noted

[6]. For example, SourceForge is the “repository of

record” for larger projects but often not the “repository

of use”, which means that some information about

projects is incorrect (e.g., an active project shows zero

activity, zero commits, zero open bugs, etc.). As an

alternative, we chose to use Ohloh.net [10]—another

OSS aggregator—because it links directly to the tracked

projects’ “repositories of use” and thus provides a more

accurate and up-to-date data set. In addition,

Ohloh.net made available historical data about each

project that allowed us to examine growth in OSS

projects.

Ohloh.net tracks a large number of OSS projects and

keeps statistics on the size and maturity of their

codebases as well as the size and activity level of their

developer communities. The numbers of OSS projects

and developers have grown dramatically in recent

years. The data indicate that a large number of active

OSS projects exist: statistics were gathered on 7,824

separate projects (data were current as of September

12, 2007). This number has grown particularly rapidly

in the last 10 years. Figure 2 shows the number of OSS

projects over the last 37 years, as indicated by their

starting dates on Ohloh.net. The growth seems to

follow a power law. The most notable feature of this

figure is the massive growth in OSS activity since

around 1996. This means that an HCI practitioner is

likely to have multiple projects from which to select

when seeking to adapt OSS to a new target domain.

Many OSS projects have begun only recently (the

newest recorded OSS project was a mere 11 days old).

The average age of the projects listed on Ohloh.net was

1,128 days (just over three years old). The oldest

project in the data set was 13,768 days old (a project

called Magnolia has a recorded beginning in 1970). The

mean age of projects is somewhat misleading because

the distribution is highly skewed, with a long tail

representing a small number of older projects. The

median age of OSS projects was 925 days (about two

and a half years old) and the mode age was 588 days

(just over a year and a half old). The distribution of

project ages is shown in Figure 3. As noted above, a

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3069

large number of projects have begun in the last decade

or so (a large number of projects are under 3,000 days

old), and this pattern reflects substantial recent growth

in OSS as a development model and technological

trend.

Of course, it is also reasonable to consider the sizes of

the codebases being produced during the lifetime of a

project. Here, we use lines of code (LOC) as a measure

of project size. (Note that this measure can be

artificially inflated if developers check libraries, utilities,

or other existing code into their development

repositories). OSS projects listed on Ohloh.net ranged

in size from 2 LOC to over 25.3 million LOC (the

Debian/GNU Linux operating system has a codebase

generated by at least 520 developers over the course of

nearly a decade). The mean project size was 125,701

LOC, but again it is prudent to look at another measure

of central tendency to better understand the data; the

median project size was 14,980 LOC. The distribution of

project sizes is shown in Figure 4 (note the logarithmic

scale).

The bulk of OSS projects have codebases that measure

in the tens of thousands of lines of code. Naturally,

some of the variance in the size of OSS codebases is

attributable to the variety in projects (some are plug-

ins to other applications while others constitute

complete operating systems).

Because OSS projects are not constrained by traditional

notions of hiring and firing paid developers, it is also

interesting to examine the size of the development

teams working on such projects.
1
 Ohloh.net listed

1 There are, admittedly, other issues that arise with OSS. OSS

projects are often maintained by volunteers, which can affect

projects that ranged from zero active developers

(where active developers are those that have

committed code in the last 12 months) to 1,990 active

developers (the large team working on Linux Kernel

2.6). The mean number of developers on a project was

4.51, while the median and mode were both 1. The

distribution of active development team sizes (and total

developers, not just those active in the last twelve

months) is illustrated in Figure 5.

One notable feature of this distribution is that there are

many small development teams (fewer than 15 active

developers) and relatively few larger development

teams. This pattern is reflected in the distribution of

total developers (the gray line in Figure 5).

In general, the data provided by Ohloh.net reflect an

OSS community that is large, active, and growing. OSS

projects come in all sizes, and typically have small

development teams. (However, one would be correct in

assuming that larger projects tend to have more

developers: the correlation between project size [LOC]

and active developers is positive, r
2
 = 0.40).

Bugzilla Compared to Other OSS Projects

On the question of whether Bugzilla is somehow special

among OSS applications, we can summarize by saying

that Bugzilla is more mature than the average OSS

project. Bugzilla’s age, codebase, and development

team size are noted in Figures 3, 4, and 5 to show

where this project lies in the context of the larger space

of OSS projects. Bugzilla (~8 years old) is older than

development in interesting ways: for instance, the direction

and intensity of development may not be centrally controlled.

Further, many large OSS projects (e.g., Mozilla Firefox) include

teams of paid developers.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3070

Figure 2. Growth of the OSS community (1970-2007).

Figure 3. Frequency distribution of the ages of OSS projects tracked by Ohloh.net.

Figure 4. Frequency distribution of the number of lines of code in OSS projects

tracked by Ohloh.net.

Figure 5. Frequency distribution of the number of developers on OSS projects

tracked by Ohloh.net.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3071

 98% of the OSS projects surveyed, it has a larger

codebase (44,569 LOC) than 68% of the projects

surveyed, and its active development team (12

developers) is larger than 92%. Bugzilla is a substantial

OSS project with a large, stable codebase that has

been developed and tested over a long period by

numerous developers. These facts (and Bugzilla’s score

on other criteria) made it an attractive candidate for

our project.

That said, Bugzilla is not a conspicuous outlier in the

space of OSS projects. There exist many comparably

mature OSS projects: the Ohloh.net data listed at least

33 other OSS projects that were older than Bugzilla

with larger codebases and a larger number of active

developers; more than 450 projects had larger

development teams. HCI groups that are considering

in-house development of software should be

encouraged to look to the OSS community for

opportunities to adapt existing OSS projects, but they

should take care to develop appropriate criteria for

selecting a particular OSS project for adaptation.

Finally, it is worth noting that at least one peripheral

factor worked in our favor when it came to accessing

development support in the OSS community: the local

area (Mountain View, CA) is very active in OSS

development and has a rich technology community.

Conclusion

It is our position that HCI practitioners can realistically

consider adapting OSS projects as the basis for their

own specialized applications. Doing so allows an HCI

team to play a substantial role in the development

process with only a small investment in development

resources. In addition, the number and diversity of

currently active OSS project means that HCI

practitioners have a far better chance of finding one

that is compatible with their functional requirements

than they had in the past.

The data from Ohloh.net illustrate that OSS has come

into its own as a model for software development. The

number of mature and well-known deployed OSS

applications should also reassure HCI practitioners that

this approach is worth considering for projects both

large and small. However, taking the time to evaluate

OSS projects in terms of core functionality,

configurability and extensibility, robustness,

modifiability, and activity of developer community may

well lead an HCI practitioner to excellent candidates for

adaptation.

Our own experience highlights this fact: in under two

years, our HCI group was able to gather requirements

and deploy multiple production systems by adapting

the Bugzilla bug-tracking system to NASA’s needs.

Looking ahead, the adaptation of OSS has the potential

to reduce the cost and effort required to maintain and

improve these new NASA systems: the core code (that

supports data management, search, etc.) will continue

to improve through contributions from the OSS

community leaving our team free to work on those

features of the system that are specific to our target

domain.

The gains from such collaboration are not one-sided,

however. The OSS community stands to gain from HCI

adaptation of OSS projects as well. First, an increase in

the number of contributors is likely to further

strengthen the OSS movement. Second, HCI

involvement in particular will serve to improve the

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3072

usability of OSS projects as a by-product of usability

enhancements for the new domain-specific application:

new code, which implements usability and functional

improvements, may be contributed back to the original

OSS project and community.

Indeed, while modifying the Bugzilla system we made a

number of usability improvements to the core system

functionality (e.g., a redesign of the report creation

interaction) that were determined by OSS developers to

be valuable to the entire Bugzilla user base. By

contributing these features back, we are able to share

the long-term management of the feature as well as

contribute better usability to a community with less HCI

focus. This is the standard, valued approach for

providing improvements within the OSS community. It

is also valuable for the HCI product development team

because the community takes collective responsibility

for maintenance of new features that are accepted into

the project’s core codebase and that reduces the work

required to integrate with future OSS releases.

In general, collaboration between HCI and OSS has the

potential to be mutually beneficial. Our goal in this

paper has been to describe how we collaborated with

an OSS project without demanding that the OSS

community change its current practices. Armed with a

realistic picture of the OSS world, and with some

criteria upon which to evaluate OSS projects for

adaptation, HCI practitioners will (we hope) be able to

build on our positive experience working with OSS.

Acknowledgments.

This work was supported by the NASA Exploration

Systems Mission Directorate. We thank Robin Luckey

and everyone at Ohloh.net for helping us obtain OSS

data and for tolerating our traffic on the Ohloh.net

server. We also thank Max Kanat-Alexander for his

significant contribution to NASA’s CxPRACA system.

References
[1] Benson, C., Muller-Prove, M., Mzourek, J. (2004).

Professional usability in open source projects: GNOME,

OpenOffice.org, NetBeans. Proc. CHI 2004.

[2] Beyer, H. & Holtzblatt, K. (1997). Contextual

Design: A Customer-Centered Approach to Systems
Designs. Morgan Kaufmann.

[3] http://www.bugzilla.org/

[4] Chengalur-Smith, S., and Sidorova, A. (2003).

Survival of open-source projects: A population ecology

perspective. Proc. of 24th International Conference on
Information Systems (ICIS ’03).

[5] Frishberg, N., Dirks, A. M., Benson, C., Nickell, S.,

Smith, S. (2002). Getting to Know You: Open Source
Development Meets Usability. Proc. CHI 2002.

[6] Howison, J., and Crowston K. (2004). The perils

and pitfalls of mining SourceForge. Proc. of the 1st

International Workshop on Mining Software
Repositories (MSR 2004), 7-11.

[7] Krishnamurthy, S. (2002). Cave or community? An

empirical examination of 100 mature open source
projects. First Monday, 7(6).

[8] Nichols, D. M., Thomson, K., and Yeates S. A.,

(2001). Usability and Open Source Software

Development. Proc. of the Symposium on Computer
Human Interaction (SIGCHI New Zealand), 49-54.

[9] Nichols, D. M., and Twidale, M. B. (2002). Usability

and Open Source Software. Available online:
http://www.cs.waikato.ac.nz/~daven/docs/oss-wp.html

[10] http://www.ohloh.net/

[11] Parnas, D. L. (1972). On the criteria to be used in

decomposing system into modules. Communications of
the ACM, 15(12), 1053–1058.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3073

[12] Smith, S., Engen, D., Mankoski, A., Frishberg, N.,

Pedersen, N., and Benson, C. (2001). GNOME Usability

Study Report. Available online:

http://developer.gnome.org/projects/gup/usertesting.h
tml.

[13] http://sourceforge.net/

[14] Twidale, M.B. and Nichols, D.M. (2005). Exploring

Usability Discussions in Open Source Development.

Proc. of the 38th Annual Hawaii International
Conference on System Sciences (HICSS 2005).

[15] Wheeler, D. A. (2007). Why Open Source Software

/ Free Software (OSS/FS, FLOSS, or FOSS)? Look at

the Numbers. Available online:
http://www.dwheeler.com/oss_fs_why.html.

CHI 2009 ~ Case Studies ~ Experience with Software & System Development and Evaluation April 4-9, 2009 ~ Boston, MA, USA

3074

