TASAR

NASA Airborne Technology Application for En Route Flight Optimization

David Wing, TASAR Principal Investigator NASA Langley Research Center david.wing@nasa.gov 757-864-3006

Optimizing in a Dynamic Complex Environment

SUA – Special Use Airspace SWIM – FAA System Wide Information Management WX – Weather

Leveraging cockpit **automation** and **connectivity** to real-time operational data to enhance coordination with Dispatchers and ATC for **flight optimization** benefits

An Early Adopter Application

TASAR Attributes	Benefits
Consistent with current operations Requires no changes to existing FAA systems, policies, roles, training	Near term
Low threshold for FAA approval Non-safety-critical intended function	Low Cost
Per-aircraft capability Allows gradual implementation with immediate benefits	Immediate Savings
Leverages aircrew availability / low workload en route Provides more opportunities to accrue benefits Encourages crews to become proactive about efficiency	Accelerated ROI
Platform for future innovations in cockpit automation Integrate with avionics, dispatch, data sources, data communications	Growth Potential

Traffic Aware Planner (TAP)

Innovative Qualities

- Onboard interactive "app" used directly by the pilot to enhance real-time flight operations
- Turns data connectivity into immediate operational benefits
- Powerful route-optimization function able to find common and unexpected solutions
- Handles complex, dynamic constraints of nearby traffic, weather, and restricted airspace
- Multi-dimensional optimization provides flexibility unmatched by other software applications
- Versatility to change optimization objective in real time during the flight
- Adaptable, low-cost implementation with proven appeal to early adopters

TAP and the Emerging "Connected Aircraft"

Designed as an Electronic Flight Bag (EFB) application

Ownship data via standard avionics interfaces (read only) Aircraft current state, active route, traffic data

Environment data via air/ground connectivity Latest winds, weather, airspace status, etc.

Two Modes of Operation

Auto Mode

Computes real-time route optimizations

Manual Mode Analyzes pilot-entered route changes

TAP's "Manual Mode"

Analyzes pilot-entered route changes

- Easy route/altitude entry via touch interface
- Supports lateral and/or vertical route changes
- Automatically finds nearest published waypoint to selected location
- Single-touch editing of added and rejoin waypoints
- Displays time & fuel outcomes of entered route/alt
- Depicts conflicts with traffic, weather, restricted airspace graphically and in text

TAP's "Auto Mode"

Computes real-time route optimizations

- Integrates route optimization with conflict avoidance

- Avoids traffic, weather, restricted airspace
- Employs pattern-based genetic algorithm
- Processes 400-800 candidates every minute
- "Snaps" to published waypoints
- Pilot control of optimization objective, limiting waypoint, and solution complexity
- Flexible optimization: trip cost, fuel, or time
- Multiple solution types: lateral, vertical, combo
- Displays time & fuel outcomes of each solution
- Intuitive, extensively tested, highly rated user interface

TAP Display in Portrait Orientation

TAP Integrates Route Optimization with Conflict Avoidance

Airline Operations Workshop, Ames Research Center, Aug 3 2016

Special Qualities of TAP's Optimization Engine

Watch it Work (Video)

- Solutions updated cyclically every 60 seconds
- 400-800 viable candidate routes
- Convergence through 'Natural Selection' process over 20 generations
- 'Survival of the Fittest' = Flyable, most optimal, & conflict free

Human Factors Iterative Design Process

- Interactive HMI mockup
- Computer-based trainer (CBT)
- Human Factors evaluations (2 HITL sims, 2 flight trials)
- TAP pilot procedures document

Current HMI Design

System Tested in Relevant Environment

All Airspace User Classes are Projected to Benefit

Mean savings per flight

Class of	Optimization Objective					
Airspace User	(1) Save Time		(2) Save Fuel		(3) 50/50 Weighted	
	ΔΤ	ΔF	ΔΤ	ΔF	ΔΤ	ΔF
Network	4.2	-122	3.4	575	3.6	543
Low Cost	2.9	-123	2.5	406	2.6	344
Regional	1.0	-88	0.8	137	1.0	66
Business	1.2	-22	1.6	64	1.5	53

 $\Delta T:$ Time savings (minutes) $\Delta F:$ Fuel savings (pounds)

Fast-time simulation study (2012)

- Historical trajectories between 12 representative airport pairs analyzed
- 510 flights between July 11-20, 2012
- 300-2000 TASAR-like alternative trajectories evaluated for each flight
 - At five minute intervals
- Convective weather on East Coast, Midwest

Conservative measures applied

- No requests during initial climb
- No requests with conflicts
- One request per sector
- No requests near handoff
- No requests within 200 nmi of destination

Three flight optimization objectives studied

(1) Save Time, (2) Save Fuel, and (3) 50/50
Weighted

Benefits Estimate Tailored to Partner Airlines

Operator	Annual TASAR Fuel Benefit	Annual TASAR Time Benefit	Annual Benefit (est.) [‡]
Alaska* 109 737s	1,040,000 gallons @ \$3.26/gallon = \$3,390,000/year	110,700 min @ (\$17 to \$28/min) = \$1,759,000/year	\$5.15M
Virgin 53 A320s	1,411,000 gallons @ \$3.03/gallon = \$4,275,000/year	133,500 mi n @ about \$6/min = \$812,000/year	\$5.09M

Historical trajectories used as a baseline for estimating benefits

- 1,606 Alaska flights analyzed
- 1,554 Virgin flights analyzed

Benefits Per Flight

- Alaska: 2.89 min/flight, 27.8 gallons/flight
- Virgin: 2.75 min/flight, 28.0 gallons/flight

Annualized average across <u>all</u> flights, even those that did not benefit

* Excludes Alaska, Oceanic, and international operations

⁺ Fuel, maintenance, and depreciation. Excludes crew costs.

Airline Operations Workshop, Ames Research Center, Aug 3 2016

Safety, Certification/Operational Approval

Two analyses performed by Rockwell Collins under contract* to NASA

<u>Analysis 1</u>: Operational hazards / safety requirements

- Applied two aviation-industry-accepted methods of safety analysis to TASAR
 - SAE ARP 4761 system safety analysis
 - ED78A/RTCA DO-264 Operational Safety Assessment (abbreviated)
- FEC determination likely to be "Minor" or "No Effect" for workload, "No Effect" for loss of function

Analysis 2: Certification and operational approval requirements

- Reviewed 17 regulations, standards, and guideline documents applicable to proposed TASAR system:
 - Class 2 EFB installation determined no special requirements beyond hardware and installation approval
 - Type B software application TASAR similar to other "dynamic calculation" non-safety-critical applications
- Rockwell Collins DERs reviewed TASAR approval basis: no concerns identified

Conclusions confirmed by FAA AIR-130 and AFS-430 (policy makers for EFB applications)

- Also decided:
 - FAA declared TASAR is not an "ADS-B In Application" (it's a performance/planning app w/ optional ADS-B input)
 - FAA sees no need for an industry "TASAR Standard"

Existing policies allow for TASAR operations now, via POI approval

DER: Designated Engineering Representative FEC: Failure Effects Classification POI: Principal Operations Inspector

Partner Airline Operational Implementations

Interface with User and NextGen Technologies

TASAR Roadmap Aligns w/ NextGen Programs

- TASAR cockpit-integrated flight optimization technology, first of its kind
 - Designed to enable substantial first-adopter efficiency benefits at minimal cost
 - Leverages ground-derived info for better solutions
 - ADS-B IN increases ATC approval rate
- Digital TASAR sharing data via SWIM and trajectories via Data Comm
 - Common wind, weather, SUA status, sector data, traffic intent, ...
 - Complex requests, lat/lon WPTs, reduced workload & errors, ...
- 4D TASAR sharing constraints with **TBFM / IM**
 - Business trajectory with metering input, schedule achievement / conformance

Impact: Near Term and Far Term

• Near term: TAP Fills a Void

- Pilots have the time, but no tools for optimization
 - Dispatchers, ATC are focused on other things
- TAP enables pilots to request route changes that are truly beneficial, more likely to be approved
- Approved route changes equate to direct benefits, with immediate payback
 - Trip cost savings, fuel burn & emissions reduction, delay recovery
- Far Term: **TAP as a Catalyst for Transformation**
 - Change to air traffic management is onerous, years to implement
 - TAP will encourage pilots to exercise more authority over their flight path
 - Maturing tomorrow's technology through in-service use today
 - Transformation to **on-demand mobility** and **increased operational autonomy**

From the Ground Up: How the Internet of Things Will Give Rise to Connected Aviation, published by Gogo LLC, 2016.

"Autonomy will take time – However, applications such as NASA's TASAR program [TAP] leverage some elements of autonomy to achieve complete optimization..."

For More Information on TASAR

Available at ntrs.nasa.gov:

- Project summary & status
 - AIAA-2015-3400, AIAA-2013-4231, NASA/CR-2016-219197
- Concept description
 - NASA/CR-2013-218001, AIAA-2012-5623
- TAP software application description
 - AIAA-2016-4067, AIAA-2013-4967, AIAA-2013-4968
- User benefits
 - AIAA-2012-5684, NASA/CR-2015-218786, NASA/CR-2015-218787
- Safety and operational hazards
 - NASA/CR-2013-218002, DASC.2013.6712530
- Certification and operational approval
 - NASA/CR-2015-218708, DASC.2013.6712530
- HITL simulation experiments (2013, 2014)
 - Pending NASA TM (HITL-1, 2)
- Flight Trials (2013, 2015)
 - AIAA-2014-2166, NASA-CR-2015-218673 (FT1), Pending NASA TP (FT2), NASA/CR-2016-219215 (FT2 ATC analysis)
- Future Roadmap
 - AIAA-2016-4212, NASA/TM-2016-219176

Or Contact David Wing TASAR Principal Investigator NASA Langley Research Center david.wing@nasa.gov 757-864-3006