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Overview

Brief introduction to Resilient Ops

Delay prediction using flightsayer

Optimization and metrics under uncertainty using Toolkit for Optimality Metrics 
Overlay (TOMO)
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Uncertainty is not the enemy… not quantifying and 
hedging against it is

The future is uncertain, even in the short term

• Weather forecasts are probabilistic

• Human actions (FAA, airlines) aren’t deterministic

• Conformance to plans isn’t perfect

There are two complementary approaches to dealing with uncertainty

• Try and reduce uncertainty through better technology and processes

• Measure, quantify, and predict uncertainty to hedge against it
− Develop methods to predict randomness
− Build algorithms that explicitly account for uncertainty
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Flightsayer: Probabilistic flight delay predictions
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Predicting flight delays using flightsayer

Flightsayer initially developed as a passenger-facing tool
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Detailed delay 
predictions by flight, 
up to 24 hours out; 

likelihood of 30-
minute delay vs 1 
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Delay causes, e.g., 
capacity constraints, 

late inbound flight

Flightsayer	generates	probabilistic	forecasts	of	delay
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An example of a probabilistic delay forecast
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It	is	possible	to	make	sound	decisions	even	with	imperfect	information
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Flight forecasts are driven off probabilistic capacity 
forecasts
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Under the hood: Flight delay forecasts are generated 
from airport capacity forecasts

8

Capacity	
prediction	
engine

Weather 
(TAF)

Advisories

Schedule

Airspace	
simulator

Delay	
predictions

All	flight	and	capacity	predictions	are	accessed	via	a	simple	API
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TOMO: Measuring and optimizing under uncertainty
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TOMO: Measuring and optimizing under uncertainty
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TOMO is a large-scale optimization model that computes optimal trajectories of 
aircraft under various objectives such as delays, fuel burn, and environmental 
impact

• Allows a simulated scenario to be compared to a baseline
• Facilitates an apples-to-apples comparison of two scenarios by normalizing the 

performance of each to the “best achievable” case

Traditionally, there have been two challenges to using an optimization-based 
baseline

• Computational difficulty in calculating optimal solutions to large-scale problems
• Calculating optimal solutions under uncertainty (need to determine the optimal 

decisions given that there was uncertainty in the inputs when the decision was 
made)
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TOMO is designed to provide optimal metrics as well 
as actionable decision feedback
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Key is being able to optimize under uncertainty
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Large-scale optimization of trajectories given schedules and capacities has been 
studied by various groups (including NASA)

However, optimizing under uncertainty has been overlooked, typically for being 
”too hard”

Key to optimizing under uncertainty is to provide trajectories with recourse
• If scenario X happens, fly this this trajectory; if not, fly this other trajectory
• Output needs to explicitly state decisions that need to be made under all 

scenarios (effectively generating a detailed playbook for each flight)
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TOMO generates routes with recourse when given a 
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a 
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a 
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a 
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a 
probabilistic scenario tree capacity forecast
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Probability	trees	of	airport	capacity	can	be	generated	using	
flightsayer’s probabilistic	capacity	forecasts
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Solved by column generation (decomposition of a large 
problem into multiple parallel sub-problems)
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A day in the life of the NAS (2030)
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Optimization under uncertainty is key to greater 
autonomy and better understanding of decisions

Being able to optimize under uncertainty will be key to realizing greater autonomy 
in planning and execution

• Beyond human capacity to envision all possible scenarios that could play out and 
develop a plan for each scenario

• Will lead to greater efficiency through better hedging strategies

Being able to “retroactively” optimize under uncertainty will lead to a better 
understanding of past decisions

• Were decisions on 7/29 better than on 7/28 given the information that was 
available?

• Was Delta more efficient than American given the operating constraints and best 
available information?
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Takeaways

For Airline Operations Center

• Uncertainty can be quantified, and lead to meaningful decisions

• IROPS, dispatch may find probabilistic predictions useful, as long as they are 
interpreted consistently and rigorously

For NASA

• Developing predictive algorithms that are rigorous and robust is important

• Models that explicitly deal with uncertainty will be key to achieving 
autonomy for planning and optimization
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