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ABSTRACT 

We review 25 articles presenting 5 general classes of computational models to 
predict pilot error. This more targeted review is placed within the context of the 
broader review of computational models of pilot cognition and performance, 
including such aspects as models of situation awareness or pilot-automation 
interaction. Particular emphasis is placed on the degree of validation of such models 
against empirical pilot data, and the relevance of the modeling and validation efforts 
to NextGen technology and procedures. 
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1 INTRODUCTION 

The next generation of air transportation systems will impose a large set of new 
procedures and new technology on the triad linking the flight deck pilots, the air 
traffic controllers, and automation. Will such procedures be feasible with the 
technology provided? Added procedures and responsibility (particularly on the 
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flight deck) may lead to pilot workload overload. Layers of automation designed to 
mitigate this overload may degrade situation awareness in a manner that may be of 
little consequence until an off-nominal event or an automation failure occurs 
(Burian, 2007; Wickens et al., 2009). In the conventional approach to air space 
evolution, human-in-the-loop (HITL) simulation is coupled with application of 
principles of good human factors design to achieve effective development. 
However, as is often stated, application of good human factors principles rarely 
guarantees fully-effective design with complex systems, and HITL simulation is 
often time consuming. Even a well-designed study may cover only a small range of 
the parameter space that should be investigated, and may involve only 8-10 pilots. 
While such a sample is often adequate to evaluate routine performance, it does not 
provide adequate statistical power to infer the nature of pilot response to off-
nominal events (Wickens, 2001, 2009); and yet these are the critical break points of 
aviation safety (Wickens, 2000). 

The complementary alternative, which is the focus of the current paper, is the 
computational model of pilot performance (Foyle and Hooey, 2008). This may be 
either an analytical equation, or a discrete event simulation that represents some 
aspect of pilot performance. It may range from the relatively simple, such as a Fitts’ 
Law analytical model predicting pilot reach time to controls, or a model predicting 
pilot subjective ratings of flight dynamics, to the very complex, which might 
simulate all aspects of a pilot’s vision, cognition and action (e.g., Man-machine 
Integration Design and Analysis System MIDAS; Gore, 2010). 

The objectives of this paper are to describe a project in which we defined criteria 
for the relevance and usefulness of pilot models to certificating agencies like the 
FAA, gathered all available literature on pilot models, and then performed an in-
depth analysis on models addressing one specific facet of aviation: pilot errors. 

2 MODEL FEATURES AND CRITERIA 

We identified a preliminary set of coding criteria or features to characterize 
models, based heavily on guidelines set out for models of display and control 
configuration by Wickens, Vincow, Schopper, and Lincoln (1997). Model features 
used in this evaluation belonged to one of two general classes. First, there are 
descriptive features that have no evaluative (e.g., “better” or “worse”) connotation 
to them, such as the type of model (e.g., simulation versus equation). This defines 
class A. Second, there is the class of features we refer to as “criteria”, whose rating 
for any particular model does implicitly or explicitly suggest greater or lesser 
desirability. For example, all other factors being equal, a validated model is more 
desirable than an unvalidated one. This second general class of evaluative features 
can be further subdivided. One set of evaluative features (class B) are those that are 
clearly related to the quality of the model validation efforts, including such items as 
how close the population in the validation experiments is to commercial pilots, as 
well as the degree of success in the validation effort, in terms of the model’s ability 
to accurately predict pilot performance. The other set of evaluative features (class 
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C) are those features that are important in assessing the overall value or utility of the 
model, but are not related to validation. These include features such as usability and 
software support that were beyond the scope of this project. These original criteria, 
along with other model features were iteratively refined with team member input, 
based on lessons learned while reviewing the literature, and specific requirements 
related to NextGen.  

Altogether, nine features were defined to characterize each separate research 
paper that examined a pilot performance model, with each categorical feature 
having a number of different levels. We define first the three class A features and 
then the six class B features. 

(A1): Type of modeling effort. The modeling papers in the analysis were 
classified according to model type. The model types included: discrete event 
simulation, analytic equations, regression, or qualitatively descriptive models.  

(A2): Aspect of pilot performance modeled. After reviewing the available 
models, this categorization appeared to encompass all human performance variables 
evaluated by the model, and each term provided a useful aviation-relevant 
description that could also be associated with keyword searches. It was important 
that these categories be not mutually exclusive. For example, a model designed to 
assess situation awareness could be tailored, in a particular application, to predict 
errors in situation awareness, and hence might also receive classification as an error 
model (for that application).  

(A3): Model name. Several of the models we review depend upon the same 
fundamental architecture, and are often associated with a particular name, such as 
ACT-R or MIDAS. Where relevant and available, this is called out as a separate 
feature of model description, to aid searching and classification.  

(B4): Empirical data available. Here we determined if empirical human 
performance data were reported in the paper that could be directly employed (or 
was employed) to evaluate and validate quantitative predictions of the model. 

(B5): Validation approach. Validation approach may range from quantitative 
validation (i.e., product-moment correlation between model prediction and observed 
data across a range of evaluated conditions) to qualitative validation (e.g., the 
pattern of errors predicted by the model was quite similar to that shown by the 
pilots). 

(B6): Correlation result. These numerical terms describe the results of a 
quantitative validation approach through the value of the correlation and the sample 
size. The sample size does not refer to the number of pilots sampled, but rather the 
number of conditions across which the bivariate point of a [model prediction - data 
point] could be determined (e.g., three conditions of weather; n = 3). 

(B7): Correlation method. The most desirable model validation is one that 
predicts mean pilot performance (e.g., errors, workload) across two or more 
different conditions, and such difference is captured by the model. A less preferred 
correlational method correlates performance data to different pilots (not different 
conditions). 

(B8) and (B9): Population and Test-bed. These can each be considered 
evaluative, in the sense that some levels on each of the two features (e.g., population 
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of commercial pilots, test bed on a high- fidelity commercial aircraft simulator) 
make the study more realistic and therefore of higher utility than studies employing 
less representative populations (e.g., general aviation pilots) or test-beds (e.g., PC 
simulations). 

3 MODEL IDENTIFICATION AND CLASSIFICATION 

Our search identified 160 relevant articles, which were then reviewed and coded 
according to the  Class A and B features listed above. These categories represent a 
set of factors by which models and validation efforts can be characterized. In some 
cases, two independent sets of codes were applied to a single article if that article 
reported two validation experiments of a single model or if the paper presented two 
models that were validated using different aspects of a single data set.  

A sample of 31 coded articles was selected for a round of independent coding to 
assess inter-rater reliability. Of these 31 articles, there was perfect agreement 
between the two raters on 28 of the models, indicating a reliability of 90.3%. The 
three discrepancies were resolved. 

4 OVERALL MODEL VALIDATION STATISTICS 

The number of models that could be fit into each category of pilot performance 
(e.g., manual control, error) was tallied. A given model validation was sorted into 
more than one category of pilot performance if it cut across multiple categories 
(e.g., a model of pilot visual scanning of a flight management system could be 
coded as both Automation and Vision). The following lists the 13 model aspects and 
for each, the number of articles identified and the percentage of those articles 
containing validation information of some sort:: Pilot-automation interaction (12, 
25%); Communications (7, 0%); Decision making (22, 27%); Error (25, 28%); 
Fatigue (3, 67%); Manual control (30, 67%), Multi-task and task management (8, 
50%); Procedures (24, 21%); Full-pilot model (i.e., including more than 3 of the 
aspects) (51, 24%); Situation awareness (12, 58%); Spatial disorientation (1, 0%); 
Visual/attentional processes (49, 63%); Workload (37, 43%). Full details are 
provided in Wickens et al. (2011). 

The overall statistics of these are that, of 281 different modeling efforts (some of 
the 160 articles contained more than one effort), 118, or 42%, offered some form of 
validation.  

5  PILOT ERROR MODELS 

As described above, 25 of the articles focused on pilot error. We now focus on 
these in greater detail. The choice of pilot error as a target for our first in-depth 
analysis of the results was because of its direct linkage to “show stopping” mishaps 
and accident (Wiegmann and Shappell, 2003) and because pilot error, however 
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defined, is an important component in overall system reliability. The 25 
computational pilot error models were distilled to 17 separate modeling exercises 
and were classified into five major subgroups. In the next section, we describe these 
modeling approaches in greater detail.  

5.1  Human Reliability Analysis.  
A set of three papers (Salmon et al., 2002; Stanton et al., 2003; and Salmon et 

al., 2003) evaluated different means of classifying pilot error, with a focus on the 
Systematic Human Error Reduction and Prediction Approach (SHERPA). The 
validation is was accomplished by comparing the kinds of errors that SHERPA (and 
two other comparable error taxonomies) would predict as SHERPA was exercised 
by a sample of students, with errors that were predicted to occur by expert pilot 
subject matter experts (SMEs). Both predictions were made within an auto-land 
flight scenario. A validity score was reported in terms of the hits (errors that were 
predicted by SHERPA which were also predicted by SMEs) and misses (errors 
predicted by SMEs not predicted by SHERPA). Scores indicated about 75% 
validity. That is, 75% of the SME-identified errors were predicted by SHERPA. 

A paper by Miller (2001) presented the Aviation Safety Human Reliability 
Analysis Method (ASHRAM), also heavily founded on the principles of human 
reliability analysis. The paper presents ways for predicting plausible error inducing 
conditions on the basis of a three-stage model of pilot information processing 
(perception, cognition, action), and the influence of performance shaping functions. 
It can be used prospectively, to predict these error-likely conditions, or 
retrospectively in mishap analysis, to understand how breakdowns in pilot 
information processing could have played a role.  

5.2  Procedural Risk Models 

A set of four papers (Stroeve, Blom, and Bakker, 2011; Stroeve, Blom and 
Bakker, 2009; Stroeve and Blom, 2005; Blom, Corker, Stroeve, and van der Park, 
2003) was centered around one generic model – TOPAZ (Traffic Organization and 
Perturbation Analyzer;), which was developed at NLR (Netherlands Aerospace 
Research Lab). In these papers, TOPAZ was applied to the prediction of runway 
incursions resulting from one aircraft failing to stop at an intersection where another 
was on a take-off run. The focus of the model was to predict objective risks. Thus 
this model incorporated component models of two pilots and a ground controller in 
their interaction. Because it was a Monte Carlo simulation model, repeated runs 
predicted the relative frequency of these very rare events (runway collisions). 
However the studies report verification, rather than validation. That is, the model 
allowed users to exercise different environmental, pilot and equipment conditions 
(e.g., high vs. low surface visibility, presence or absence of alerting systems, 
different kinds of pilot errors) to examine the influence of these factors on incursion 
likelihood. Importantly, the most recent paper by Stroeve, Blom, and Bakker (2011) 
explicitly incorporates automation effects, so that the influence of human 
automation interaction (HAI)-related factors can be predicted, an element quite 
clearly related to NextGen.  
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5.3  Knowledge-Based Procedural Models 

A set of three pilot model papers, focusing on the sources of failure in retrieving 
procedural and declarative knowledge from memory were directly based on ACT-R 
or ACT-R assumptions (see Lebiere et al., 2008, for a description). In ACT-R, the 
memory for and activation of goals to trigger actions is fallible (e.g., forgetting to 
activate an automation function). Hence errors are generally memory failures 
caused by insufficient strength of the goal to generate the action at a particular time, 
or by a context that activates an inappropriate goal above the threshold where its 
actions are triggered. 

The paper by Fotta et al. (2007) describes an application of the ACT-R based 
model Human Error Modeling for Error Tolerant Systems (HEMETS) to the design 
of a fighter-cockpit interface in predicting different forms of errors (e.g., attention, 
planning, motor). 

The paper by Byrne et al. (2008) is one of a set of five papers (four others 
reviewed below) that modeled taxiway turn errors, based on data provided by 
NASA Ames. These chapters all appear in the integrative book Human Performance 
Modeling in Aviation by Foyle and Hooey (2008). In this database, a corpus of 
twelve errors committed by eighteen two-pilot crews, over three scenarios each in a 
high-fidelity landing and taxi pilot in the loop (PITL) simulation scenario at 
Chicago O’Hare Airport was compiled. The error descriptions were provided to the 
modeling teams, along with extensive other material regarding verbal transcripts 
before and after touch down, airport surface layout and timing of events (e.g., 
communications, passage of intersections).  

Byrne et al. (2008) focused on decision errors in which a SME generated a set of 
decision rules that could be applied by pilots to decide when and whether to turn at 
a particular intersection. These were implemented in ACT-R, along with 
information about differences in time stress that could lead pilots to use more 
heuristic rules (faster, but less accurate), or more formal rules (slower to execute, 
more accurate). When these were incorporated in the ACT-R simulation, errors 
were generated, and the authors report a qualitative similarity between the pattern of 
errors generated by ACT-R and those in the error database. 

The ACT-R version used by Lebiere et al. (2008, in Foyle and Hooey), applied 
to the same NASA taxi-turn database, focused to a greater extent on memory errors 
(factors causing a failure to retrieve the appropriate turn information at each 
intersection), and hence either turn at the wrong intersection, or fail to turn at the 
right one. 

5.4   Error Generation Models 

Deutsch and Pew (2008, in Foyle and Hooey) describes a model, the Distributed 
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Operator Model Architecture (D-OMAR), which employs ACT-R-processes to 
select procedures (or fail to select procedures). In contrast to the previous two ACT-
R versions, which focused on decision and memory errors respectively, this paper 
explicitly addressed and describes described errors according to the Reason (1990) 
error taxonomy of slips, mistakes, and violations. Their model produced errors 
driven by expectation based on partial knowledge (e.g., an incorrect turn driven by 
the modeled pilot’s expectation that the taxi clearance would be the shortest route to 
the gate) and errors driven by habit (e.g., an incorrect turn driven by the pilot’s habit 
to always turn left to his/her gate despite an unusual taxi clearance directing a right 
turn).  

Air MIDAS (Corker et al, 2008 in Foyle and Hooey) is a full pilot model that 
has received fairly extensive validation in other model categories (e.g., workload, 
procedures, visual attention; see Gore, 2010). However one particular model effort 
was focused on the taxi-turn error data set described above. Environment triggers 
(e.g., turns, signs, ATC calls) elicited the baseline behaviors that were predictive of 
human performance in current- day operations. This served to identify risk factors 
that increase the probability of error or that could mitigate the error. Air MIDAS 
incorporates many assumptions about working memory, pilot activity scheduling, 
and mental workload, based on empirical research findings.  

The A-SA (Attention-Situation Awareness) model (Wickens et al., 2008, in 
Foyle and Hooey) focuses on modeling visual attention, and the memory-related 
loss of situation awareness as factors that lead to either an enhanced or degraded 
sense of position of where the aircraft is on the taxiway  surface, an undesirable 
state leading to turn errors. To the extent that SA degrades, pilots are left to use 
data-free decision heuristics (of the sort modeled by Byrne et al., 2008, described 
above) to decide the direction of turn, and hence make incorrect turns.  

The Cognitive Architecture for Safety Critical Task Simulation (CASCaS) is a 
full pilot performance computational model proposed by Lüdtke et al. (2009). 
However one particular application is represented to predict two kinds of errors: 
learned carelessness and cognitive lockup. Both predictions appear to be based on 
an ACT-R learning mechanism, as pilots have repeated experience with using the 
flight management system (FMS) in programming particular procedures. As 
manifested in the error predictions reported in the paper, both types of errors are 
essentially errors of attention (failure to notice incorrect states) that produce 
inappropriate actions (or action failures) on the FMS. 

5.5 Error Detection and Recovery Models 

While the previous sections have focused on predicting the occurrence of pilot 
errors, two final papers focus on the post-error processes of error detection and 
recovery. 

Karikawa et al. (2006) presented the Pilot Cognitive Simulation (PCS), which 
models full pilot cognitive capabilities. The emphasis of this simulation model was 
on the pilot’s mental model of a particular scenario. The model predicts how well 
pilots will notice errors with and without automation enhancements to the primary 
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flight display.  
Nikolic and Sarter (2003) present a qualitative flow model of recovery from 

errors, essentially defining two strategies. A backward strategy tries to “undo” the 
erroneous action. A forward strategy simply ignores the actions that created the 
error, but tries to recover performance to the ideal currently desired state. Their 
description of the two strategies offers the qualitative prediction that the forward 
strategy will be more likely adopted under time pressure. The model was validated 
against a set of 38 Aviation Safety Reporting System (ASRS) reports in which the 
error recovery strategy could be evaluated. Of these, 75% were categorized as 
forward recovery. The authors did not classify the extent to which these (and not the 
remaining 25%) occurred under greater time pressure. However, it can be inferred 
that time pressure was present in most cases (there was urgency when recovering 
from an error in flight), and hence the prevalence of forward reasoning strategies in 
the ASRS database represents a form of empirical validation. 

6 CONCLUSIONS REGARDING PILOT ERROR MODELS 

Models of pilot error represented a relatively small proportion of the overall 
body of available pilot models. In the review and synthesis described more fully in 
Wickens et al. (2011), we offered two reasons for what we saw to be the relatively 
low rate of validation: Only about half (9 of 17) contained data against which the 
model could be partially validated, and of these, none contained a true quantitative 
(e.g., correlational) validation. 

First, errors in aviation are, fortunately, fairly rare and it is often difficult to 
induce them in operational settings with enough frequency to obtain a stable 
performance target for the models to capture (but see Wickens, Hooey, Gore, Sebok 
and Koenecke, 2009, for a successful attempt to validate models of perceptual 
errors, and Nikolic and Sarter, 2003, for successful use of ASRS data). When error 
rate is low, then differences in error rate (e.g., across conditions, or technology) will 
be less reliable, and it will be harder then to validate how well a model can predict 
these differences. Naturally, validating model-predicted differences across 
extremely rare events, like the actual runway incursions examined by the TOPAZ 
models, becomes nearly impossible. 

Second, errors have multiple internal (pilot-information) causes, such as 
breakdowns in attention, memory, and procedure selection. Thus a single process 
error model is asked to predict a data base of errors that are typically related to 
multiple processes, a challenging endeavor to say the least.  

Given this state of affairs, a fruitful approach would be to model the breakdown 
of processes that are pre-cursors to errors, such as attention failures, poor task 
management, loss of situation awareness and high workload. These have been 
categorized (see Wickens et al., 2011) and are the targets of our current efforts. 
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