Presented as part of the panel:

NASA

Byrne, M.D., Kirlik, A., Allard, T., Foyle, D.C., Hooey, B.L., Gluck, K.A., and Wickens, C.D. (2008). Issues and challenges in human performance modeling in aviation: Goals, advances, and gaps. <u>Proceedings of the Human Factors and Ergonomics Society 52nd Annual Meeting</u>. Santa Monica: HFES

The National Aeronautics and Space Administration (NASA) as part of the Aviation Safety and Security Program (AvSSP), recently completed a 6-year Human Performance Modeling (HPM) project (documented in a recent book edited by Foyle & Hooey, 2008). The NASA HPM project followed the approach of applying multiple cognitive modeling tools to a common set of aviation problems. Five modeling teams attempted to predict human error and behavior given changes in system design, procedures, and operational requirements. The five human performance modeling tools applied in the NASA HPM project were: Adaptive Control of Thought-Rational (ACT-R); Improved Performance Research Integration Tool/ACT-R hybrid (IMPRINT/ ACT-R); Air Man-machine Integration Design and Analysis System (Air MIDAS); Distributed Operator Model Architecture (D-OMAR); and, Attention-Situation Awareness (A-SA) model.

The NASA HPM project focused on modeling the performance of highly skilled and trained operators (commercial airline pilots) in complex aviation tasks. Leveraging existing NASA data and simulation facilities, NASA was able to offer rich data sets of highly skilled operators performing complex operational aviation tasks to the five modeling teams for use in model development and validation. Two task-problem domains were chosen for study and application of the modeling efforts representing different types of aviation safety problems, and spanning NASA's charter. The two aviation domain problems addressed by the modeling teams of the HPM project, were:

1) Airport surface (taxi) operations (Problem time frame: Current-day operations; Problem class: Errors (taxi navigation errors); and,

2) Synthetic vision system (SVS) operations (Problem time frame: Future operations; Problem class: Conceptual design, concept of operations development). Note: SVS is a new display technology for a visual virtual representation of the airport environment from a digital database via computer-generated imagery.

Because of the relatively unique opportunity to apply multiple HPMs to two different aviation-domain problems at different phases of the design lifecycle, the project revealed several important considerations regarding the utilization of the models for aviation system design and evaluation. Specifically, important considerations related to model selection, development, interpretation, and validation were observed. First, with regards to selecting a model, the philosophies, approaches, and underlying assumptions of the models differ widely and these factors must be considered in the selection of a model. Second, with regards to model development, it was observed that models of complex environments require intensive knowledge engineering and would be aided greatly by the availability of task analysis techniques and approaches aimed at populating models with relevant input including not only task sequences, but also operator strategies. Third, there was a clear need for visualization and documentation tools to enable easier interpretation of the underlying model assumptions and model results to ensure the model output is understood and useful for the end-user. Fourth, it was evident that the validation of complex aviation HPMs, especially for novel systems in the concept development phase, presents a number of challenges. Several validation techniques focused on different end-goals, and employed in different phases of the model development efforts, are presented. Each of these four considerations will be discussed in turn.

Foyle, D.C. and Hooey, B.L. (2008). Human performance modeling in aviation. Boca Raton, FL: CRC Press/Taylor & Francis.

The NASA Human Performance Modeling Project: Implications for Future Modeling Efforts

David C. Foyle, PhD NASA Ames Research Center

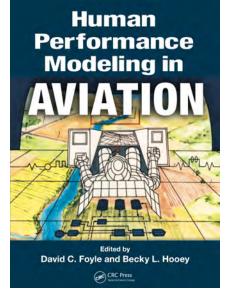
Becky L. Hooey, MSc

San Jose State University at NASA Ames Research Center

http://hsi.arc.nasa.gov/groups/HCSL/

NASA Human Performance Modeling (HPM) Project

Six-year NASA research effort


- Under NASA Aviation Safety and Security Program (AvSSP)
- Five human performance modeling teams participated
- NASA provided human-in-the-loop data for model development and validation

Addressed two aviation safety problems

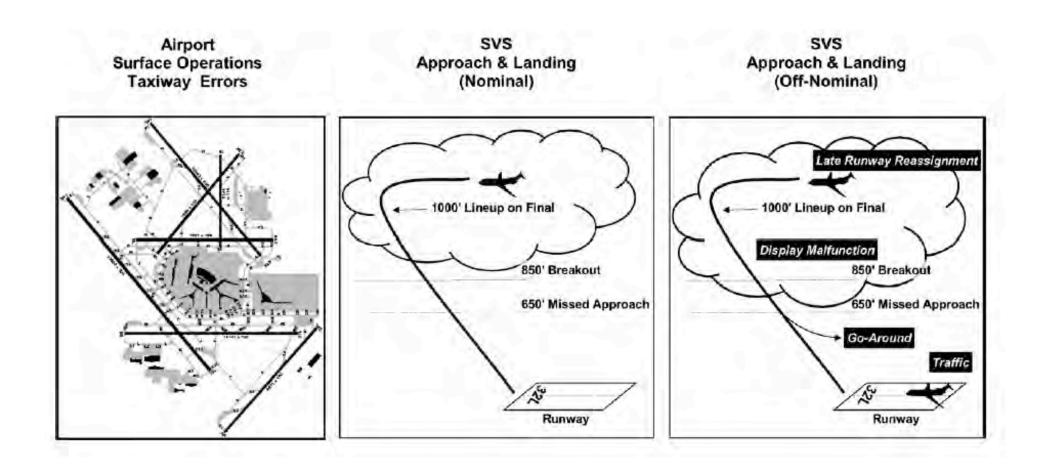
- Surface (taxi) operations error analysis
- Synthetic Vision System (SVS) design, evaluation & integration

Outcomes

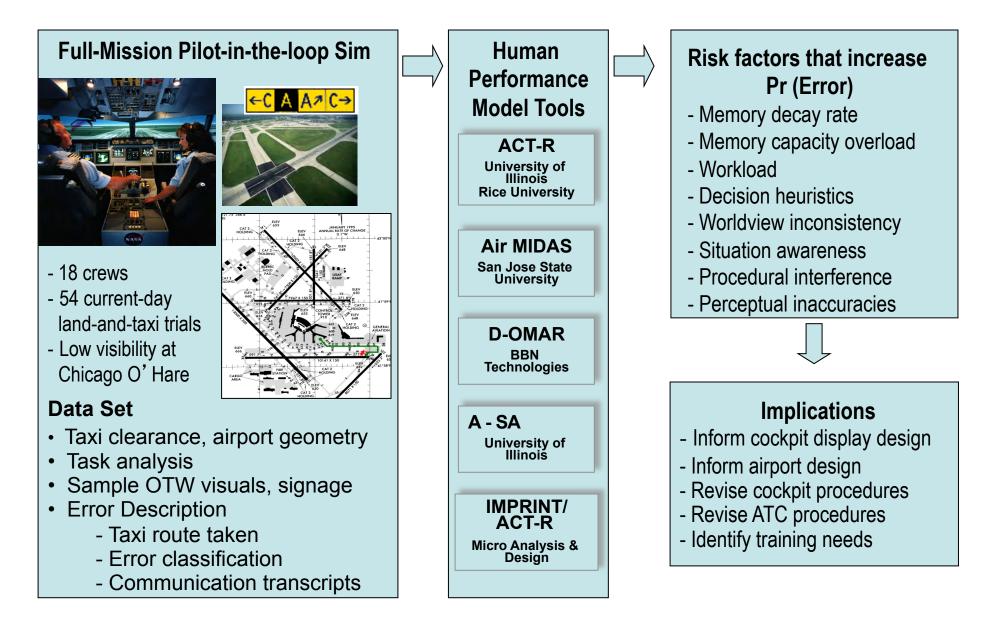
- Model cross-comparisons
- Modeler round-table
- Lessons-learned and challenges developed

Foyle & Hooey (Eds), (2008). Taylor & Francis / CRC Press

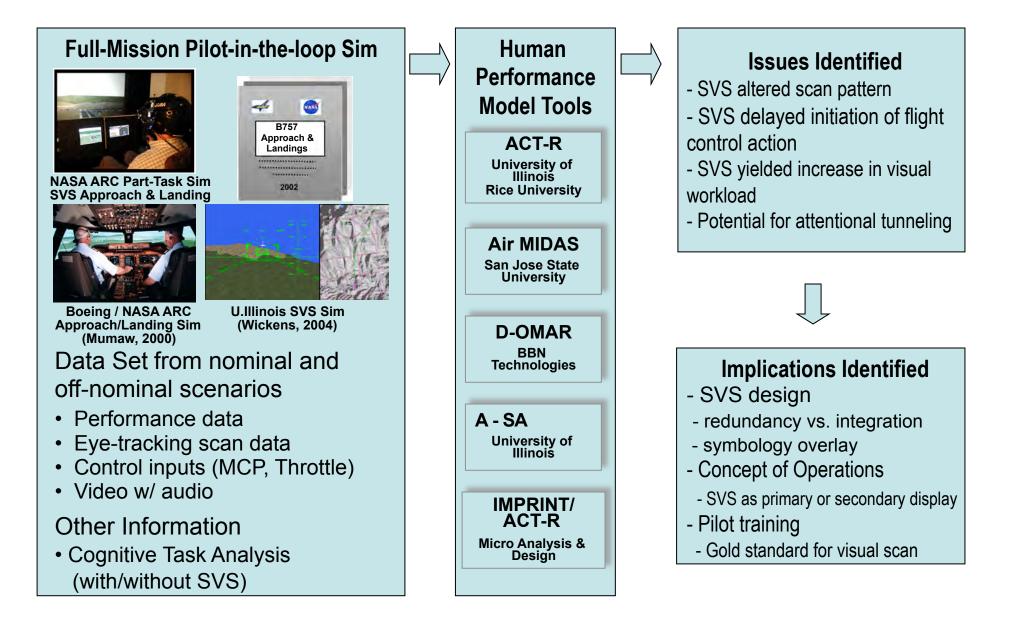
The NASA HPM Project: Human Performance Models


Human Performance Model Tools	Each model represents a unique approach to representing the human and the environment
ACT-R Rice University University of Illinois	ACT-R, a validated, bottom-up cognitive model represents the human combined with a desktop flight simulator that represents the environment. Focus: Dynamic Decision Making in a Closed-loop Context
Air MIDAS San Jose State University	An integrated approach to modeling the functional and physical aspects of the operator, the system, and the environment. Integrated with a dynamic aircraft model (desktop flight simulator). Focus: Aviation/ATM human-system interaction, Workload
D-OMAR BBN Technologies	A flexible modeling environment comprised of a discrete-event simulator and languages that instantiate models of human perceptual, cognitive, & motor. Focus: Multi-task behavior, Teamwork, Procedural Integration
A - SA University of Illinois	Predicts pilot attention and SA based on the salience, effort, expectancy, and value of information and a Belief Module which decays with time. Focus: Situation Awareness, Attention Allocation
IMPRINT/ ACT-R Micro Analysis & Design	ACT-R, a bottom-up validated cognitive model represents the human combined with IMPRINT, a task network model that represents the environment. Focus: Learning Behavior (of new procedures / adaptation to new technology)

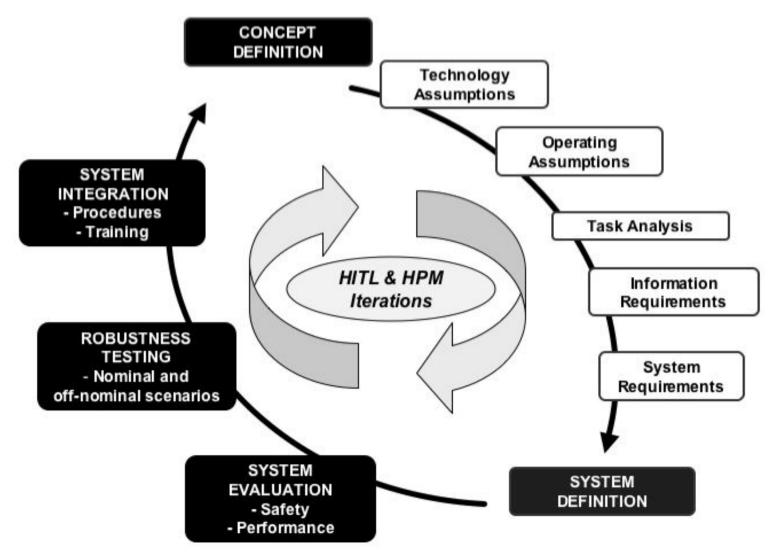
The NASA HPM Project: Goals


- Address real aviation safety problems
- Develop and extend human modeling capabilities for aviation applications
- Determine how human-in-the-loop simulations and human performance modeling work synergistically in system design and evaluation

Address real aviation safety problems


System Design Implications: Surface Operations

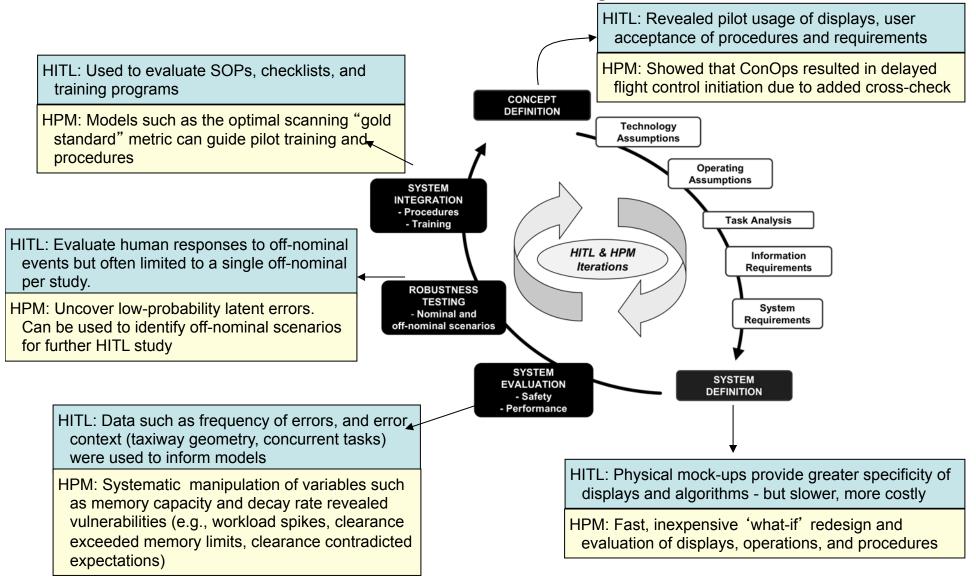
System Design Implications: SVS for Approach & Landing



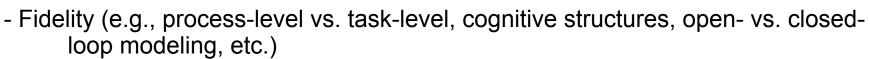
Develop/Extend HPM Capabilities for Aviation Applications

Model Capability	Specific Advance	Modeling Team
Human- Environment Interactions	 Enabled closed-loop behavior by integrating HPM with desktop simulator 	ACT-R; Air MIDAS
	 Integrated a task network model with a cognitive model 	IMPRINT/ACT-R
Visual Attention	 Replicated information seeking behavior of pilots 	ACT-R; Air MIDAS; D-OMAR
	 Implemented model-learning of scan patterns 	IMPRINT/ACT-R
	 Predicted visual scan due to top-down and bottom-up factors /developed scanning optimality score 	A-SA
Situation Awareness (SA)	- Demonstrated how SA changes as a function of time and distraction	A-SA
	 Identified error vulnerabilities due to memory deficits 	IMPRINT/ACT-R; Air MIDAS
Human Error	 Identified error vulnerabilities due to pilots heuristics, biases, and strategies 	ACT-R; D-OMAR
	 Identified error vulnerabilities due to SA deficits 	A-SA

Value added at each stage of the design and evaluation lifecycle



Integrated HITL/HPM Approach



Value added at each stage of the design and evaluation lifecycle

Revealed Future Challenges

Model Selection

- Assumptions (e.g., cognitive process instantiation, output metrics [workload, SA], etc.)
- Philosophy (e.g., cognitive theory, etc.)

Model Development (esp. for complex environments)

- Requires intensive knowledge engineering
- Need for techniques for populating models (parameters, task sequences and strategies)
- Need for "shared libraries" of common tasks for complex environments (such as aviation, nuclear, etc.)

End-user issues

- Need for increased model interpretability
- Improved visualization and documentation tools
- Capture and understand model assumptions, parameters, "hidden assumptions"

Validation (esp. for modeling new, emerging systems)

- What constitutes validation for a new, not yet totally defined system?
 - Results validation (observed vs. predicted) is a standard, but may not be relevant for an emerging system