

Interim Workshop on Human Performance Modeling

NASA Ames Research Center March 6, 2003

NASA Aviation Safety Program (AvSP) System-Wide Accident Prevention (SWAP) Element Human Performance Modeling (HPM) Element

AvSP SWAP

Human Performance Modeling

AvSP Interim Workshop on Human Performance Modeling AGENDA

8:00 AM	Registration
8:30	Welcome & Agenda
8:45	Overview
9:10	Cognitive Task Analysis
9:45	Simulation & Scenarios
10:20	Break
10:40	D-OMAR
11:30	ACT-R
12:20 PM	Lunch
1:30	IMPRINT/ ACT-R
2:20	A-SA
3:05	Break
3:25	Air MIDAS
4:15	Discussions
5:00	Adjourn

Avs	P SWAP	Human Performa	nce Modeling Ames Res		
	Charac Operator level, c Comprehensive, Integrative comp Output is genera	teristics of selected models cognitively oriented mature and validated systems putational frameworks ative, stochastic, context sensitiv	ve		
Model	Туре	Research Team	Demonstrated Sources of Pilot Error		
ACT-R/PM	Low-level Cognitive with Statistical Environment Representation	Mike Byrne Rice University Alex Kirlik University of Illinois	* Time pressure * Misplaced expectations * Memory retrieval problems		
Air MIDAS	Integrative Multi-component Cognitive	Kevin Corker Brian Gore Eromi Guneratae Amit Jadhav & Savita Verma San Jose State University	* Workbad * Memory Interference * Misperception		
A-SA	Component Model of Attention & Situational Awareness	Chris Wickens Jason McCarley Lisa Thomas University of Illinois	* Misplaced attention * Lowered SA		
D-OMAR	Integrative Multi-component Cognitive	Stephen Deutsch Richard Pew BBN Technologies	* Communications errors * Interruption & distraction * Misplaced expectation		
IMPRINT/ ACT-R	Hybrid: Task Network with Low-level Cognitive	Rick Archer Micro Analysis and Design, Inc. Christian Lebiere, Dan Schunk, & Eric Biefeld Carnegie Mellon University	* Time pressure * Perceptual errors * Memory retrieval * Inadequate knowledge		

"Flaps 25" as an interrupt to on-going tasks

Procedures are classified as contending or non-contending

- In a complex procedure hierarchy only particular subsets of procedures are in contention
- at a low level in the hierarchy contention governs resource utilization
 - contention among procedures requiring the eyes or the controlpedestal hand
- at an intermediate in the hierarchy contention establishes policy
 - contention between in-person aircrew and ATC party-line radio conversation

Steve Deutsch & Dick Pew, NASA HPM Workshop, March 6-7, 2003

Steve Deutsch & Dick Pew, NASA HPM Workshop, March 6-7, 2003

Findings and Implications

Steve Deutsch & Dick Pew, NASA HPM Workshop, March 6-7, 2003

• In the nominal and late reassignment scenarios there were large individual differences in SVS usage from decision height to landing

	Sub3_Sceni	7_Phase4, DH to End Sub4_Sc			Sub4_Scen	en7_Phase4, DH to End Sub5_Sce				n7_Phase4, DH	
	Sub3_Scen8_Phase4, DH to End				Sub4_Scen8_Phase4, DH toEnd					Sub5_Scent	
	Nominal	Late			Nominal	Late			Nominal	Late	
	Segment	Segment			Segment	Segment			Segment	Segment	
AOLName,	Fix_Dur_%	Fix_Dur_%,			Fix_Dur_%	Fix_Dur_%			Fix_Dur_%	Fix_Dur_%,	
off	1.61	0.57			14.89	3.17			6.71	3.76	
OTW	4.36	5.66			20.79	61.08			45.89	21.76	
SVS	48.75	78.38			10.4	4.3			15.79	38.65	
PFD	33.42	7.13			18.78	23.84			17.11	23.47	
NAV	3	0			2.22	3.24			0	0	
MCP	0	0			32.59	0			1. 14	0	
CONTROLS	7.45	2.8			0	1.49			0	0	
OVERLAP	1.41	5.47			0.33	2.88			13.36	12.36	

Carnegie Mello Micro Analysis & Design The IMPRIN	m 🛋
Big Start End 999: END 1: Aircraft Controls 3: Aircraft Displays 1: Aircraft Controls 1: Aircraft Environment 6: Act R Thought 5: Communications	Times of the second speed Primary Flight Display Primary Flight CAGL Primary Flight Primary Flight
Aircraft Displays	10: Decision height Indicator

Micro Analysis & Design	Carnegie Mellon Validation				
	Procedures	Errors			
	•CTA •Videos •Spreadsheets •United pilot	Videos			
March 6-7	NASA HPM	Workshop			

	General (Avg Pilot)	Specific Individual Differences Good – Bad ◄ (Scenarios 6, 10)		
Performance	Scenario Differences What makes SA hard?			
Scan	Model the Average Average the Models	PDT Diff Time-Line MDD Dwell Differences Model Diff ^{←→} 6. 10		
	Advantage of Effort All scenarios	Lisa's Analysis		

Coefficients
AOI: Instrument Panel (IP), Outside World (OW), Nav Display (ND), SVS Display (SVS)
Tasks: Aviate, Navigate
Coefficient Assignment: Least integer ordinal. Some assumptions:
<u>Priority</u> •Aviate > Navigate •Navigation increases priority on final (precision) •Priority of AV & NAV increases on missed approach
Bandwidth: •No information (BW=0) (OW in IMC, SVS in baseline) •OW = SVS •BW increases with more instruments (IP>OW=SVS)
Relevance (SEEV model assumptions from Wickens et al., in press)

Parameter	10		1000-600	000-000	Delow 650
Bandwidth (B)	IP	3	3	3	5
	ow	0	0	2	3
	ND	1	1	1	1
	SVS				
Relevance (R)	IP (av)	2	2	2	4
	IP (nav)	1	1	1	3
	OW (av)	0	0	1	1
	OW (nav)	0	0	2	4
	ND (av)	0	0	0	0
	ND (nav)	2	3	2	2
	SVS (av)				
	SVS (nav)				
Priority (V)	Aviate	2	2	2	4
	Navigate	1	2	2	3

Bandwidth (B)	IP	3	3	3	5
Bunumuti (B)	ow	0	õ	2	3
		1	1	1	1
	svs	2	2	2	3
Relevance (R)	IP (av)	2	2	2	3
	IP (nav)	1	1	1	2
	OW (av)	0	0	1	0.5
	OW (nav)	0	0	2	1.5
	ND (av)	0	0	0	0
	ND (nav)	2	1	1	2
	SVS (av)	1	1	2.5	0.5
	SVS (nav)	1	2	2	1.5
Priority (V)	Aviate	2	2	2	4
• • •	Navigate	1	2	2	3

Model predictions of pilot scan (correlation)

Model fitting Approaches. There were many.

```
Key Findings
•Correlations (model fits) are generally positive.
        Without Effort: Mean value =0.74 (55% variance)
        With Effort: r=.81 (65%)
        Effort parameter adds 10% to model fit
•Pilot differences (based on performance differences in responding to off-
normal):
Scenario 6 phase 2 (scan behavior just before misalignment is visible).
Conventional IP.
        Pilot 3 ⊗ r≈.04
        Pilot 5 © r=.99
        No scan data for Pilot 4
Scenario 10 phase 2 (scan behavior just before misalignment is visible). SVS.
        Pilot 3 🐵 r=.59
        Pilot 4 🔅 r=.88
        Pilot 5 © r=.80
Poorer pilot: poorer model fit.
```


