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ABSTRACT Transparency in integrated human performance models (HPMs) is
needed to support model verification, validation, and credibility.  However, model
transparency can be difficult to attain because of the complex interactions that can
exist among the cognitive, physical, environment and crewstation models, and
because the cognitive models embedded within integrated HPMs produce behaviors
that are not directly observable. This paper will illustrate several techniques adopted
by the Man-machine Integration Design and Analysis System (MIDAS) to increase
three forms of transparency: input transparency, model architecture transparency,
and output transparency.
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INTRODUCTION
Modeling human cognition, and understanding the manner that humans use
information, is becoming increasingly important as system designers develop
automation to support human operators. Tasks that were traditionally manual
control and physical in nature are being replaced with tasks that are cognitive in
nature. This is exemplified in the aviation community where automation is being
adopted to increase efficiency and safety (NextGen, 2007). It is also becoming more
important in surface transportation with automation such as adaptive cruise control,
autonomous cruise control and vehicle guidance replacing manual control
requirements with an increased need to monitor the automobile’s performance
(Sheridan, 1992; Seppelt & Lee, 2007).  Furthermore, nuclear power plant design,
medical system design and operation, unmanned aerial vehicles (UAVs) and other
telerobotic operations and manufacturing systems are all increasingly placing the
human into similar supervisory roles (Sheridan and Ferrell, 1974; Miller, 2000; Zhai
& Milgram, 1991; Sheridan, 1992; Boring et al., 2006). In these environments, it is
important to model both the physical human as well as human cognition.



Human performance models (HPMs) can take many forms from the purely cognitive
models built from empirical research and theories of human processes (e.g.,
attention, perception, decision making, response times, and response
characteristics), to digital human models (DHMs), or physical models of human
anthropometry, biomechanics, posture, movement, bones and anatomy (Gore,
2008). Incorrectly modeling any of these performance factors, or ignoring one in
favor of the other, may lead to incorrect predictions. Cognitive and physical HPMs
can be combined to produce an integrated HPM that simulates human responses
(Gore, 2008) and predict how humans interact with advanced technologies (Gore &
Smith, 2006).

Integrated HPMs combine a number of individual process models of operator
performance into a coordinated representation of interacting micromodels of human
perceptual, cognitive and human motor system representations.  These micromodels
feed-forward and feedback to each other within the HPM’s environmental context to
produce predictions of operator performance1. In addition, some of the more
comprehensive integrated models incorporate computer-aided design / engineering
(CAD/E) renditions of the environment, the crewstation, and the human form.
These DHMs can feed physical constraints to cognitive process models that in turn
feed information to the DHM in a closed-loop fashion.

One example of an established integrated HPM is the Man-machine Integration
Design and Analysis System (MIDAS)2. MIDAS is a 3-D rapid-prototyping human
performance modeling and simulation environment that can be used to facilitate the
design, visualization, and evaluation of complex human-system concepts.  MIDAS
aims to reduce design cycle time, support quantitative predictions of human-system
effectiveness, and improve the design of crew stations and their associated
operating procedures.  MIDAS accomplishes integrated behavioral modeling by
linking a virtual human (a physical anthropometric mannequin model) to a
computational cognitive structure representing human capabilities and limitations,
and to a series of procedures, and places this virtual human within commercially
available CAD/E databases.  MIDAS combines continuous-control, discrete-control
and critical decision-making models to represent the ‘internal models and cognitive
function’ of the human operator in complex control systems.  It involves a critical
coupling among humans and machines in a shifting and context-sensitive function.
MIDAS’ "first principles" approach to modeling human performance is based on
computational models of the mechanisms that underlie and cause human behavior
within the context of human-system performance (Corker & Smith, 1993; Gore &
Corker, 2000). The basic human perceptual and attentional processes, together with
working and long-term memory models3, action selection architectures and physical
representations of the human operator and environment models have been
validated4. The closed-loop nature of the relationship between cognitive models and
DHMs results in more representative human-system performance than either
approach alone.

Need for Transparent and Interpretable Human Performance Models
Model transparency refers to the ability to comprehend the relationships that exist
among the models being used in the simulation, the performance of the models in
the simulation, which models are triggering in the model architecture, and whether
                                           
1 For a complete description of the component models within an integrated representation, the
reader is directed to (Gore, 2002), Gore & Smith (2006) and Gore (2008).
2 The MIDAS research program began in the fall of 1984 (at the time termed A3I) and began
developing the first fully integrated HPM linking together cognitive and performance models.
3 MIDAS v5.0.2 (beta) currently includes a three-stage memory model with a working memory,
long-term working memory and long-term memory representation.
4  See Gore & Corker (1999) for a listing of the validated models in MIDAS.



the model is behaving as the model developer would expect (Gore, 2008).  Gluck
and Pew (2005) refer to this as runtime interpretability.  Other researchers have
referred to this as model traceability, model behavior visibility, model verifiability,
model validity and model interpretability (NASA, 1989; Napierky, Young, Harper,
2004; Gluck & Pew, 2005; Hooey & Foyle, 2008).

Combining models in an integrated fashion, as in MIDAS, adds complexity.  This
complexity highlights the need for improved model transparency via visualization
tools that maximize comprehensibility of the models operating within the software.
Model transparency is particularly important for models that include representations
of human cognition because cognition is an internal process that is not directly
observable. In addition to increasing the visibility of the cognitive processes, model
transparency is required to support model verification and validation, which, in turn
helps establish model credibility.  When models are transparent the user has
increased confidence that the output from the model is in line with human
performance. Conversely, when models are not transparent, the user cannot
confidently interpret, nor trust that the model’s performance is operating according
to his/her expectations.  While there is widespread agreement as to the importance
of model transparency, there is less consensus regarding what transparency actually
means, and how to accomplish it.   This paper outlines three classes of model
transparency:  Input Transparency, Model Architecture Transparency, and Output
Transparency.   A discussion of the importance of each class of transparency, and
how each was accomplished in MIDAS, follows.

INPUT TRANSPARENCY
Input transparency refers to visualization techniques that allow the user to inspect
the procedures and data that have been input into the model.  In many instances,
model inputs consist simply of lines of code, which are difficult to inspect not only by
the modelers themselves but also by other users of the model output – especially
those that lack modeling and/or programming skills.  To address this problem and
increase input transparency, MIDAS 5.x was augmented to include the modeled
operator’s procedures in a task network manner.   An example of the task network
depiction is provided in Figure 1, location A, which depicts the high-level procedures
of a Captain and First Officer conducting a land-and-taxi-to-the-gate procedure.

Figure 1. MIDAS 5.x Windows - Operator Procedures (A), Properties (B), Primitive
Taskload (C), Primitives in Tree View (D), Usage of Primitives (E), Notes (F),
Functions (G) and Code Output (H).



These high-level procedures can be populated with additional logic through a
sequence of nested activity trees.  The analyst can see the tasks and task sequence
of each operator, and drill down for increased detail and sub-task breakdowns.  For
example, Figure 2 highlights the auditory and visual activities that the Captain will
complete in carrying out the landing task. This network structure shows that the
Captain is monitoring auditory information and in parallel carrying out an internal
scan pattern using a probabilistic sequence of fixation locations for the landing task.
Once the landing task is completed, a sequence of the other tasks is completed
depending on the context of the operator (rollout, turnoff, communication, taxiing
straight, turning, aircraft at gate).

Figure 2. Increased detail of the sub-task breakdown of a MIDAS v5.x model

Another tool by which input transparency is offered to the MIDAS user is the runtime
visualization of the anthropometric figure, Jack™5, carrying out the scheduled tasks
and procedures.  This form of visualization is considered input transparency because
it allows the model analyst to verify that the sequence of behaviors that have been
programmed into the model is correctly ordered and that the operator is engaging in
the correct behaviors at the correct simulation time. Figure 3 illustrates two modeled
operators conducting the series of procedures necessary to land an aircraft. The
visual cones illustrated in Figure 3 are examples of one manner in which an internal
cognitive process, visual attention, can be made transparent using runtime graphical
visualizations.  The visual cones in the Jack™ software are graphic renditions of an
approximate peripheral and foveal location.  The MIDAS behavior model drives this
cone with an empirical model of human peripheral and foveal vision response time.
This visualization allows the MIDAS analyst to troubleshoot the input procedures to
verify the order of the procedures and tasks and the internal and external scans.
The benefit of the visualization for the simulation analyst is that it can be used to
examine whether the procedure was correctly transferred and used by the model.
Often times, it is not possible to make sense of the logic contained within the fast
time simulation code without this kind of visualization. This is especially true as
models are becoming more complex and greater numbers of coordinating operators
are working towards a common system goal.

These input transparency tools allow a model analyst to inspect the model and
identify erroneous tasks or task sequence that may contribute to the generation of
false or suspect conclusions (Hooey & Foyle, 2008).  Without some visualization or
trace of the modeled operator’s tasks, catching erroneous or omitted tasks in the
model would be very unlikely, even by the modeler, given the complexity of the
computer code required to implement a complex model (Hooey & Foyle, 2008; see
also Gore, 2008; Gluck & Pew, 2005).
                                           
5 ™ Siemens PLM Solutions, Inc



Figure 3. Runtime visualization of physical and anthropometric models carrying out
procedures in the Jack™ environment.  The left panel illustrates the view from the
center of the cockpit and the right panel illustrates the left seat pilot’s profile.

MODEL ARCHITECTURE TRANSPARENCY
Model architecture transparency, arguably the most difficult form to attain, refers to
depictions of the underlying submodels, logic, and interactions among submodels.
As models increase in complexity, both in terms of the embedded models contained
within their architecture and with respect to the environments to which their results
are being applied, it is increasingly difficult to interpret the empirical basis behind
the algorithms driving the modeling architecture. When models are developed that
integrate a number of submodels together, as in MIDAS, the model software should
be transparent such that a user can determine which submodels are active at any
given time in a scenario (NASA, 1989; Pew, Gluck, & Deutsch, 2005). In an
evaluation of two distinct HPM software tools, Gore and Corker (2000) raised this
issue as a challenge for integrated HPM workload models.  As discussed in Leiden
and Best (2008), in some HPMs, individual micromodels can be engaged or
disengaged for many reasons. If behaviors become too constrained by some rule,
the model developer can turn off this constraint, thereby allowing the model to
proceed to completion within a given architecture.  Alternatively, the model
developer can remove the effect of certain elements of human performance
(presumably deemed to be non relevant) by turning elements of a model on or off.
For example, to remove the effect of memory on human performance, one might
disengage the memory model thereby ensuring perfect memory.  As such, it is often
difficult to ascertain which micromodels were operating during runtime and which
were not, and what the resultant effects on predicted behavior would be.  Without
this level of insight into the model, and an accurate understanding of the
assumptions embedded in the model, results may be overstated.  As Hooey and
Foyle (2008) point out, this is a significant problem for some integrated modeling
software tools because no definite statement can be made as to which performance
parameters were operational within the architecture when the modeling software
was run.

The difficulty associated with verifying and tracing the performance of the various
micromodels contained within early versions of MIDAS motivated the NASA MIDAS
team to improve the model architecture transparency in MIDAS 5.x.  MIDAS was
augmented by adding a tree view of all of the model components including the
behavioral primitives (Figure 1, location D). The primitives represent empirically
based, human performance models within the MIDAS software. This “primitives” list
is used by the model analyst to inspect the available operator models, equipment
models, or user-defined models that are available for use in the simulation. The
properties/computational logic associated with these behavioral primitives is also
illustrated in Figure 1, location B.  This properties tab illustrates the logic and
relationship among the various model components.  The properties tab also
possesses the taskload levels that are associated with the component model within
MIDAS, the beginning and ending effect, and the if-then release conditions

Visual Cones Profile View



associated with the component model being triggered among other logical
conditions.

For example, Figure 1, location D illustrates the operator primitives available to
drive the performance of the modeled operator in the simulation and Figure 1,
location E demonstrates usage of the primitives in a task sequence.  One example
from Figure 1 is the operator primitives of “push and release” and “reach object”.
These behavioral primitives used in sequence drive the operator model to complete
a reach followed by a push and release action to a button in the environment. This
function animates the anthropometric model, contributes a defined taskload to
operator workload and calculates a task time based on the distance to and size of
target to which the modeled operator is reaching.  A second example, “attribute
test” combined with “perception test”, returns the value of an attribute along with
the operator’s current perception level of a component in the crewstation or a
feature in the external environment that contains that attribute. This means that the
operator will carry out the primitives necessary for the perception model to reach a
threshold that will allow perception of a feature or component in the environment to
be attained. In addition, the perception workload is driven by the type of attributes
displayed or emitted by a component or feature of a model (see Figure 1, location
C). The models listed in these primitives comprise the basic models within MIDAS
and because of their importance to driving correct human responses, cannot be
changed by the user.  Users can add new primitive behaviors in the “user-defined”
areas of the software, which MIDAS 5.x reports along with the output because these
models possess an increased likelihood of affecting other models contained within
MIDAS’ integrated architecture.  These user-defined primitive models or functions
are then vetted for compliance with the MIDAS assumptions and if the
models/functions are within acceptable limits, the models/functions will be included
in future versions of MIDAS. This is important because only with a consistent model
architecture can the results be interpreted or compared across tasks and domains.

A host of functions exist within MIDAS 5.x but a subset includes visual and auditory
perception functions, physical performance functions, and performance shaping
factors such as fatigue, stress, workload levels and performance accuracy. As shown
in Figure 4, location A (also shown in Figure 1, location G), functions are presented
in a “tree view” tab under the “functions” folder and the algorithms contained within
the functions are interpreted by viewing the “properties” window of the specific
function of interest (e.g., Fitts’s Law – Figure 4, location B). It is also linked to a
“Notes” page (not shown) that provides the user with the empirical research results
that were used as the basis for developing the MIDAS primitives and algorithms.
Fitts’s Law is one of the component models within MIDAS. It is called whenever an
operator engages in a manual control behavior such as a reach or small hand
movement.  The modeled operator’s performance is a function of the distance that
the hand travels and the size of the target he/she is reaching towards (Fitts, 1954).
The MIDAS analyst needs to know this function so that he/she can have confidence
in the performance of the integrated model. When the analyst right-clicks on the
specific function labeled “Fitts’s Law”, the algorithmic information that makes up the
Fitts’s Law function in MIDAS is revealed.



Figure 4: MIDAS 5.x Windows - function list (A) and function properties (B).

OUTPUT TRANSPARENCY
Output transparency refers to methods and techniques that use the model output to
provide visibility into the internal operations of the model.  In the case of MIDAS,
output includes task timing, task order, as well as psychological constructs such as
workload, and situation awareness (SA). Investigating the construct output of
workload and SA in isolation, without considering the operators tasks, can be a
challenge with integrated models because of the interactions among the models
contained within the integrated model structure. Runtime visualizations of the
anthropometry provide the model analyst with increased confidence that the model’s
input parameters and tasks are occurring as would be expected but do not provide
enough information about the true effect of the system variables’ impact on the
human.  For that, runtime output of workload and SA metrics are provided in MIDAS
5.x. An example of the workload output is presented next.

Workload is defined as the perceived relationship between the amount of mental
processing capability or resources and the amount required by the task (Hart &
Staveland, 1988).  As reported in Gore (2008), MIDAS calculates attention demands
based on Wickens’ (1984) Multiple Resource Principle and incorporates a task-
loading index initially created by McCracken and Aldrich (1984) for quantifying
attention. This scale was modified subsequently to include a six-channel
representation of task load.  Combining attention demands along the input (visual,
auditory), central cognitive processing (spatial, verbal processing), and output
(psychomotor, vocal) resources accomplish a measure of attention demands. In
addition, MIDAS degradation functions were developed to model the effects of a
stressor on skilled performance through workload exceedances. Wickens (1984) and
Hamilton, Bierbaum, and Fulford (1990) indicate that when workload exceeds the
theoretical threshold value of 7, the operator sheds tasks resulting in a performance
degradation.

Examining workload values in isolation, without consideration of the operators’ task
sequence, results in a loss of valuable scenario context information. To retain the
scenario context, output transparency is offered in MIDAS 5.x by enabling graphical
depictions of workload as a function of the simulation timeline.  Figures 5 and 6
location A provide insight into the interactive nature of two operators in a simulation
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by providing a trace of the workload (noted as attention demands) model in a
recently completed aviation simulation of two pilots performing the land-and-taxi-to-
gate scenario shown above. The two figures illustrate operator workload levels along
the 6-channel workload output characterization used by MIDAS. As model
verification, it is apparent that the workload (attention) demands possess
characteristic profiles depending on the operator’s role in the cockpit with workload
spikes occurring at different times in the scenario commensurate with each pilot’s
procedural requirements.  Furthermore, the workload trends can be interpreted by
examining the ongoing operator tasks in the code output window that denotes the
model logic used to generate the output (Figure 1, location H; Figures 5 and 6,
location B). The code output window is yet another tool that can be used along with
the other visualization tools to verify the operation of the model.  When these output
measures are used in concert with the procedural sequences of the respective
operator, periods of system vulnerability can be identified and procedural redesigns
recommended with increased confidence that the model validly produced behaviors.

Figure 5. Captain Workload (Attention)
output (top) and Code Output (bottom)

Figure 6. First Officer Workload
(Attention) output (top) and Code Output
(bottom)

DISCUSSION
Balancing Model Transparency and Software Flexibility
One of the largest challenges that the MIDAS model development team faced in
developing MIDAS v5.x was balancing software transparency and model flexibility
while maintaining control of the theoretical underpinnings of the MIDAS software
and of the MIDAS philosophy. Allowing the MIDAS users/analysts the ability to enter
primitive behaviors, or modify the algorithms through the function calls could
compromise the output generated by the generally accepted “MIDAS standard”
models, which in turn could compromise the confidence of the software’s output.
The interactions among the generally accepted “MIDAS standard” models and the
user-defined models cannot possess transparency because the interactions are not
well known or defined.  Resultantly, the MIDAS development team established a
number of fundamental models that cannot be edited by the model user/analyst.
Those user-defined models that are vetted by NASA’s MIDAS team become
integrated into subsequent releases of the MIDAS software. The vetting process
supports model credibility.

The complexity of human-system interactions is certain to continue as the human is
placed into roles with increasingly shared responsibility and authority between the
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human and automation as exemplified by the next generation airspace, next
generation process control room designs, or automated highway systems.  These
systems are driving minimum thresholds for the human’s performance, which are
constrained by human cognition.  Integrated models, such as MIDAS, are useful
tools to explore the degree to which the human operates in the realm of these
threshold values, which in turn will contribute to system vulnerabilities.  As these
complex HPMs are used in advanced human-system designs, the need for model
transparency is heightened because of the complexity of the interactions.  The
current paper has illustrated the strides that have been taken to improve the
transparency of MIDAS.  MIDAS has addressed model interpretability by attaining
multiple levels of transparency (input, model architecture, and model output), which
has improved the confidence that the model analysts/users can place on the output
of the software.

CONCLUSION

The complexity associated with interactions among the many frequently
imperceptible cognitive aspects that guide human behavior will remain a challenge
for the field of cognitive modeling for years to come.   For the field of human
performance modeling to advance, it is critical that a comprehensive understanding
of the mechanisms operating in the model is formalized, and that there is sufficient
transparency in the model’s operation.  This formalization and transparency will
increase the likelihood that assumptions are properly identified and noted in the
model’s performance and that the correct model will be chosen and used for the
specific application.
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