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Abstract 

 We describe three applications of an attention-situation awareness model to predicting 
pilot performance in high fidelity flight simulations. The model incorporates the SEEV model of 
selective attention, in which eye movements are driven by salience, expectancy and value, and 
are inhibited by the effort required to move the eyes over longer distance and of concurrent tasks. 
In application 1, we predict the taxi-way errors made in a simulation in which commercial airline 
pilots navigate the airport surface at Chicago O'Hare airport. In application 2, we predict the 
scanning behavior of three commercial pilots flying a simulated approach to Santa Barbara 
Airport, using a synthetic vision system display, and responding to occasional unexpected 
events. In application 3, we predict scanning behavior and performance of 8 general aviation 
pilots flying a simulated landing approach to a terrain challenged airport. Various forms of the 
computational model are evaluated to predict scanning performance, off-normal event detection 
and, in application 3, multi-task performance of flight path control and traffic detection. The 
model is shown to be quite valid, accounting for around 85% of the variance in scanning across 
different areas of interest in the pilots' visual field. The model fit is not improved by including 
the effort-inhibition parameter. The degree to which pilots conform to the expected value 
(optimal) version of the model is shown to positively predict the indices of multi-task 
performance. The role of redundancy is also addressed. 

Overview 

 Pilot errors result from multiple causes. According to taxonomies developed by Norman 
(1981) and Reason (1990), slips are easily detectable errors in which an unintended action is 
executed, often the result of poor design. Decision “errors” result from a variety of breakdowns, 
biases or tendencies in human information processing; indeed in aviation, such errors are more 
likely to produce fatalities than errors of other classes (Wiegmann & Shappell, 1997). However 
as has been noted clearly by Woods, Johannesen, Cook, and Sarter (1994), considerable caution 
must be exercised in labeling decisions that produce unfortunate outcomes as “errors”, because 
of the great biases of hindsight. 

 The focus of the present modeling effort is on errors of situation awareness, with some 
particular emphasis given to those errors related to attention allocation. There are several reasons 
for this focus. First, an information processing analysis of decision making (the most prevalent 
fatal error) reveals that situation assessment (diagnosis) is a critical component of decision 
making (Wickens & Hollands, 2000, ch. 8). Second, Endsley’s (1995), 3-stage model of situation 
awareness places considerable emphasis on the importance of attention and perception in 
supporting effective situation assessment. Indeed a review of SA-related aircraft accidents 
revealed that SA errors related to perception and attention (Stage 1), constituted the majority of 
such accidents (Jones & Endsley, 1996). Third, given the criticality of attention in supporting 
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situation awareness (Sarter & Woods, 1995), it is important to note that some of the most 
effective computational models of human performance have been developed in the area of 
attention allocation (Carbonnell, Ward, & Senders, 1968; Moray, 1986; Klatzky, 2000). Fourth, 
recent analysis has revealed the critical role of attention in the monitoring and supervision of 
flight deck automation (Parasuraman, Sheridan, & Wickens, 2000; Wickens, 2000; Sklar & 
Sarter, 1999; Sarter & Woods, 1995; Wickens, Gempler, & Morphew, 2000). Fifth, our 
laboratory at the Institute of Aviation in Illinois has a long rich history of attention modeling 
research (e.g., Wickens, 1980; Wickens, Sandry, & Vidulich, 1983; Wickens & Liu, 1988), most 
recently guided and supported by eye-movement monitoring as a direct index of attention 
allocation (Bellenkes, Wickens, & Kramer, 1997; Wickens, Helleberg & Xu, 2002, Wickens, 
Goh, Helleberg, Horrey, & Talleur, 2003). We are able to build upon this in formulating the 
current model. 

 Thus the rationale for our focus is as follows: (1) faulty pilot judgment is a critical 
element for understanding flight safety. (2) Many such faulty judgments result from a breakdown 
in situation awareness and assessment; that is failure to attend to, and integrate appropriate 
sources of information. (3) Attention in such contexts is amenable to computational modeling. In 
the following pages we first described a two component computational model of attention and 
situation awareness (A-SA), and then discuss three different applications to pilot attention and 
performance data. 

Model Architecture 

 Foundation of the model. The underlying theoretical structure of the A-SA model is 
contained in two modules, one governing the allocation of attention to events and channels in the 
environment, and the second drawing an inference or understanding of the current and future 
state of the aircraft within that environment. The first module corresponds roughly to Endsley’s 
(1995) Stage 1 situation awareness, the second corresponds to her Stages 2 and 3. In dynamic 
systems, there is a fuzzy boundary between Stage 2 (understanding) and Stage 3 (prediction) 
because the understanding of the present usually has direct implications for the future, and both 
are equally relevant for the task.  

 The elements underlying the attention module are contained in the SEEV model of 
attention allocation, developed by Wickens, Helleberg, Goh, Xu, and Horrey (2001; Wickens, 
Goh, Helleberg, Horrey, & Talleur, 2003), which can be represented as the probability of 
attending to an area in visual space, as related to the linear weight of four components: 

(1)  P(A) = sS - efEF + (ex EX + v V) 

Here, coefficients in upper case describe the properties of a display or environment, while those 
in lower case describe the weight assigned to those properties in the control of an operator’s 
attention. These elements indicate that the allocation of attention in dynamic environments is 
driven by bottom-up attention capture of Salient (S) events, is inhibited by the Effort (EF) 
required to move attention (as well as the effort imposed by concurrent cognitive activity), and is 
also driven by the expectancy (EX) of seeing valuable (V) events at certain locations in the 
environment. For example, a high value of expectancy for a given channel (location) means that 
the channel in question has a high information bandwidth, i.e., events occur frequently on the 
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channel. A high value of weighting for expectancy means that the property of channel bandwidth 
exerts a strong influence in driving operator’s attention. The name of the SEEV model is derived 
from the first letter of each of the four boldfaced terms above. An alternative version of the 
model, to be evaluated below, combines the last two terms of expectancy and value 
multiplicatively, rather than additively as: 

(2)  P(A) = sS – efE + ev*EV. 

 Equations (1) and (2) are static analytic models. Figure 1 contains a more detailed 
representation of the dynamic form of the full attention and situation awareness (A-SA) 
components of the process model. As shown in the figure, the model combines two distinct but 
interacting modules, one of which seeks to represent the attentional processes by which a subject 
collects information from the environment, the other of which, based on SEEV, seeks to 
represent the cognitive processes by which attended information is integrated to establish the 
pilot’s level of situation awareness (SA). The attention component includes elements of the 
SEEV model, and is also based in part after Luce’s (1959) choice model, and Bundesen’s (1990) 
Theory of Visual Attention. The decision making component incorporates Hogarth and 
Einhorn’s (1992) anchoring and adjustment mechanism of belief updating. The product of the 
total model is a value of SA which ranges between 0 and 1, where 1 indicates perfect SA. This 
value is used to guide future attentional scanning, and also to determine the likelihood that the 
pilot will behave correctly (i.e., on the basis of initial planning intentions) when forced to choose 
between potential actions. In application 1, this choice is what to do at a taxi-way intersection, 
where errors are frequent.  
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Figure 1. A-SA Model for taxi-way error prediction. 

 

 When there is a full loss of SA, pilot behavior will be totally governed by predispositions 
or “default” response tendencies (e.g., “when in doubt, go straight”, or “when in doubt, guess at 
random”), and will therefore be subject to error. The behavioral tendencies assumed by the 
model will necessarily be domain-specific, and as such are not integral to the model’s 
architecture, but will be determined by the analyst for a particular application. 

 We describe three applications below the first two using the dynamic model, and the 
third, a static analytic version of the SEEV model: the first to explaining the errors made in 
aircraft taxiing in a simulation of low visibility surface operations at O’Hare International 
Airport, provided by NASA; the second is applied to a simulation of landing with a synthetic 
vision display, where we model the attention module, primarily using visual scanning as a 
validation criterion and we demonstrate its consistency with individual differences in a small 
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number of pilot situation awareness errors. The third is applied to a simulation of SVS landing 
trials, where we both model the attention module and examine its implications for performance, 
and we offer a full validation. 

Application 1: Aircraft Taxi Errors 

 The application of the model to predicting taxiway turning errors in an O’Hare Airport 
simulation study is described in more detail in Wickens and McCarley (2001). 

 Attention module. In this application pilots are assumed to encounter “events” as they 
progress along the taxiway. Each event can be characterized by its salience or conspicuity and its 
value in supporting awareness of where the pilot is (or which way he should turn) along the 
taxiway. Each parameter is coded within a range of 0 to 1.0. As represented in the attention 
module, to the left of Figure 1, attention to any given event is inversely proportional to the 
number of competing events, perceived concurrently, and also perceived recently (with an 
impact diminishing over time). Attention is influenced by salience, which is maximum for 
auditory events (Spence & Driver, 2000), and diminishes for visual events as these are available 
further in peripheral vision.  

 Attention within the model is considered to be a graded resource which can be allotted in 
different quantities to different items. The proportion of attention allotted to an item is 
determined by the item’s attentional weight relative to the summed attentional weights of all 
items that have been encountered. Situation awareness (SA) is assumed to guide attention 
allocation in a manner such that a high level of SA serves to guide scanning toward stimuli or 
events which are themselves conducive to high SA and away from stimuli degrading of SA. This 
tendency captures the influence of top-down factors such as expectancy and the confirmation 
bias on evidence seeking. 

 Belief updating module. SA is updated any time an item or group of items is 
encountered. The change in belief effected by the items encountered at a given time step is 
determined by a weighted mean of the value V of each of those items, with the V for a given 
item weighted by the attentional allotment of that item. This weighted mean will be referred to as 
the net evidentiary value (NV) for the time step. After the NV has been determined for a given 
time step, SA is updated via an anchoring and adjustment process like that described by Hogarth 
and Einhorn (1992). Thus the current value of SA is adjusted upward or downward in accordance 
with the NV of the newly encountered evidence. As noted by Hogarth and Einhorn (1992), belief 
updating via such an anchoring-and-adjustment process captures the effects of order of 
information presentation (i.e., anchoring and recency effects) on information integration. 

 After SA has been updated in response to the evidence encountered within a given one-
second interval, the model proceeds to the next interval using the newly calculated value of SA. 
If additional evidence is encountered, SA is again updated as per the processes described above. 
Across intervals wherein no evidence encountered, SA is assumed to decay. The decline of SA in 
the absence of new evidence is intended to reflect the fact that preservation of SA is a resource-
demanding process requiring rehearsal and that, even in low workload situations, such rehearsal 
is not likely to be continuous. Because the active attentive processing of irrelevant items is likely 
to interfere with rehearsal in working memory more strongly than is the presence of unattended 
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background stimuli or the demand to maintain a non-attention demanding behavior, the model 
assumes a faster decay rate for SA during attentional processing of events irrelevant to the SA 
task at hand (time constant = 5 sec) than during the absence of attention demanding stimuli (time 
constant = 60 sec, based on analysis of Ericsson and Kintsch’s (1995) model of long-term 
working memory). 

 Finally, we assume that the variance in SA that occurs across choice points will make it 
more or less likely that choice behavior will be based on processed event information (increases 
when SA is high), or that choices will be based on analyst-specified pre-existing response 
tendencies such as “when in doubt turn toward the terminal” (increases influence when SA is 
low). Behavior which is not based on processed event information may be erroneous. 

 “Validation” application. In the application of the data to predicting taxiway errors, 
described fully in Wickens and McCarley (2001; see NASA, 2001), we coded the video and 
audio tapes of a typical pilot during the simulation run, noting the time at which certain “events” 
occurred, and coding the salience and evidentiary value of each, as indicated by the prototype in 
Table 1. This allowed us to compute a value of SA at each point in time, increasing with relevant 
events, and degrading with the passage of time – slowly when nothing else was occurring and 
rapidly in the presence of irrelevant distracting events (see the “irrelevant discussion” at time 45 
of Table 1). 

 

Table 1. Example of scenario time line for taxi-way application. 

Time (sec) Object/Event Salience Evidentiary Value 

 00 Rehearsal of instructions 1.0 1.0 
 20 Irrelevant discussion 1.0 0.0 
 30 2-Way Crossing 0.5 0.5 
 32 Sign 0.5 0.5 
 35 Sign 0.5 0.5 
 40 Branch 1.0 0.5 
 45 Irrelevant Discussion 1.0 0.0 
 48 3-way crossing 1.0 0.5 
 48 3-way crossing 1.0 0.5 
 50 Visually salient traffic 1.0 0.0 
 52 Visually non-salient traffic 0.5 0.0 
 58 Point at which pilot should exit 1.0 1.0 
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 SA was assumed to reflect the probability that the pilot, when reaching a choice point 
(e.g., a two- or three-way crossing in Table 1), would recognize the correct response option and 
behave appropriately as a result. In cases where high SA did not lead the pilot to choose the 
correct response option, the pilot was assumed to select randomly from among the options 
available. The probability of a correct choice was thus equal to the probability of the pilot 
choosing correctly because he/she recognized the correct option (good SA), plus the probability 
that the pilot failed to recognize the correct option as such (poor SA) but happened to guess 
correctly among the N options. 

 In this application, we did not actually use the model to predict performance (i.e., to 
validate against errors made). Rather, we ran the model through various iterations to show how 
SA and choice accuracy would wax and wane across time, and to demonstrate how these changes 
would be influenced by changes in model parameters such as varying the impact of salience or 
decay rate. Figure 2 provides an example showing SA variation over time (top graph) and choice 
point accuracy (1-error rate: bottom graph). The discrete events in Table 1 are reflected as 
discontinuities in the SA graph of Figure 2. Importantly, as reflected in Figure 2, we included a 
run in which pilots’ SA could be accurately updated by a T-NASA display within the cockpit 
(Hooey & Foyle, 2001). The high level of SA, and low rate of choice point errors that are 
predicted as a result, correspond nicely to the values obtained by pilots in pilot-in-the-loop 
simulation data, when the T-NASA display was available. 
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Figure 2. Model predicted SA value (top graph) and choice point accuracy (bottom graph) as a 
function of time, and of different model based assumptions described in the text. 
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Application 2: Situation Awareness Supported by Synthetic Vision Systems (SVS). The 
NASA Simulation 

 The focus of our second effort was to apply the A-SA model to a very different sort of 
data, describing the performance of pilots making simulated approaches to the Santa Barbara 
Airport with and without the support of a synthetic vision system (SVS) display (Prinzel et al., 
2004; Wickens et al., 2004a, 2004b, 2004c). The scenario is described in Goodman et al. (2003). 
Several characteristics of this new validation effort required us to modify our modeling approach 
from that used in the application above. First, unlike the relatively frequent taxi-way errors, 
obvious loss-of-SA incidents were scarce in the data provided by NASA. Second, we did not 
have available any explicit or implicit “probes” of SA (e.g., SAGAT) that might have availed 
data for modeling. Third, although we were provided with a full set of data records in both video 
and digital files, these revealed few discrete “events” that could be directly tied to the gains or 
losses of SA in the manner that events (intersection choice and signage) from the taxiway data 
were. With fewer “events” it became more difficult to employ the salience component of the 
SEEV model, since salience serves the model only to the extent that it can be defined as a direct 
property of a discrete event. 

 To compensate for these shortcomings of the data set, we were provided with an 
extensive set of eye-movement data, which, in contrast to the first application taxi-data, we could 
now model directly as the output of our attention module. In addition, while we did not have 
events defined by salience, we did have available information channels defined by distinct 
locations. Following the precedence of our previous scanning model approaches (e.g., Wickens 
et al., 2003) we define these channels as Areas of Interest (AOIs). Each AOI can be defined in 
terms of a (1) transition to it, or “visit” (from another AOI), (2) dwell duration on the AOI 
before leaving it, and (3) percentage dwell time (PDT) looking at it (which is the product of the 
frequency of visits and the mean dwell duration, divided by the total amount of time). We can 
think of the PDT as a measure of the relative attentional interest of an AOI. While we could not 
model the salience of events, we were able to model the effort of moving attention 
(transitioning) from one AOI to another, assuming that such effort is monotonically related to the 
distance between AOIs. Furthermore, since the approach/landing task is one that has been often 
studied within the aviation domain, we were able to define the value of tasks on the well 
established hierarchy of aviate > navigate (Wickens et al., 2003).  

 Following the procedures developed in Wickens et al. (2003), the value of an AOI was 
equal to the Value of the task served by the AOI multiplied by the relevance of that AOI to the 
task in question. The expectancy for information contained in the AOI was determined by 
bandwidth of the AOI. Thus we were able to estimate the quantitative parameters necessary to 
determine how frequently an AOI should have been visited, and to predict how frequently it 
would be visited given the inhibiting influence of effort (which inhibits scans over wide visual 
angles). 

 General approach to modeling. Figure 3 provides our schematic representation of the 
approach to the landing used in the current SVS simulation. Each approach in the 10 scenarios 
that were described by NASA can be subdivided into four phases, distinguished from each other 
by potential changes in relevance and bandwidth of various information channels. These 
distinctions, described below, are important because they generate different relevance and/or 
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bandwidth values for the different AOIs, and hence make different model predictions of P(A), 
which can be correlated against the observed percentage dwell time.  

• Ph 1. Above 1000 ft. Regular “steady state” flight. 

• Ph 2. 1000 ft – 850 feet. Lined up on runway (whether visible or not). 

• Ph 3. 850-600 feet. Runway becomes visible as the airplane drops below the cloud ceiling 
in most IMC (low visibility) scenario landings (the exception being the missed approach 
scenario when the runway is not in sight because of low visibility below this minimum 
altitude). 

• Ph 4. Below 600 feet. Runway remains hidden in low-visibility missed approach 
scenarios. 

 

Figure 3. Schematic representation of scenario time line. 

 

 Each of these four phases defines a separate eye-movement data base. With this 
representation of the data, we applied four different approaches to the analysis, as shown in the 
2X2 matrix of Figure 4. The figure differentiates the extent to which we are interested in the 
common general behavior of all pilots (left) or differences in the specific behavior of individual 
pilots (right), and the extent to which our modeling efforts are applied to pilot performance (top 
row) versus applied to visual scanning (bottom row). While the general scan data were modeled 
for all six scenarios (5-10) that were flown in IMC (Instrument Meteorological Conditions or “in 
the clouds” above 850 ft), we chose to model in detail two landing scenarios provided by NASA 
because both were characterized by some performance data, from which variance in situation 
awareness (between the three pilots) could be inferred. These were scenario 6, a baseline 
scenario flown in IMC in which a mismatch between the visible runway and the ILS instrument 
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landing guidance forced a go-around below 850 feet, and scenario 10, in which the same 
mismatch was reflected in a misalignment between the SVS display location of the runway, and 
the actual runway view outside.  

 

Figure 4. Different approaches to data analysis. 

 

 In the upper right cell of Figure 4, the quality of situation awareness was operationally 
defined by the speed with which pilots became aware of the misalignment in the two scenarios. 
Careful review of the video tapes and transcriptions revealed that in both scenarios, pilot 5 
maintained good SA, rapidly noticing the misalignment and executing the missed approach, 
whereas pilots 3 and 4 either noticed this discrepancy only after a considerable delay, or not at 
all, needing to be reminded by the confederate first officer. The distinction between the two 
“classes” of pilot behavior (“good” and “bad” SA) was important, allowing us to discriminate 
their attention allocation behavior, as we describe below. 

 Implementation of the model. In implementing the model, we estimated the coefficients 
of bandwidth, relevance and task priority, as shown in Figure 5a (scenario 6) and 5b (scenario 
10). Using the same procedures applied by Wickens et al. (2003), we employed the “least integer 
ordinal value” heuristic, in assigning these coefficients. This is a heuristic that maintains integer 
values of all coefficients, and tries to keep these as low (and therefore simple) as possible, while 
preserving any necessary ordinal relations. As one example, the bandwidth of the instrument 
panel during a missed approach (climbing, accelerating, turning), is higher than during a straight 
in approach (compare the bandwidth parameters in Figure 5a above 650 ft – straight in—and 
below 650 ft during the missed approach). The reader can also see in Figure 5a, that in IMC 
conditions, when the outside world (OW) is not visible (above 800 ft; the left two columns), its 
bandwidth is assigned a value of 0. As a third example, the relevance of both aviating and 
navigating is increased during the missed approach phase below 650 ft because of the higher 
criticality of both of these tasks at unusual attitudes and low to the ground.  

 

 11



 

 

 

 In addition to these parameters, integer parameters for effort were assigned on the basis 
of the distance between displays in all pairwise comparisons, as extracted from Goodman et al. 
(2003, Figure 3). Laterally adjacent displays imposed an effort value of 1, vertically separated 
displays, an effort value of 2, and the presence of an intervening display also imposed an effort 
value of 2. 

 Using a version of the SEEV model in which: 

(3)  P(A) = -Ef + EV 
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(That is, no salience component, and multiplicative relation between expectancy and value), our 
dynamic model calculated the attractiveness of an AOI as a direct function of the product of its 
bandwidth and relevance (the latter, modulated by the value of the task to which it was relevant). 
To this product was added a value of 3 minus the effort required to reach that channel from the 
currently-attended AOI. This manipulation increased the attentional weight of stimuli whose 
access required little effort. Thus, when effort needed to reach an AOI was minimal (a value of 
0), attentional weight of the object was increased by 3. When the effort needed to reach an AOI 
was maximal (a value of 3), attentional weight of the object was not increased relative to the 
value established based on bandwidth and relevance. The probability with which attention 
shifted to a given AOI was finally calculated by dividing the attentional weight of the AOI by the 
summed attentional weights of all AOIs.  

 In our model, the relevance of an AOI remained the same after a fixation as before, and 
the model could either move to another AOI or remain on the AOI with a probability that was 
related to the relative attentional weights of all available AOIs (including that of the current 
fixation). In this way, the eye could remain for a long dwell on a single AOI of high relevance. 

 Thus, for each phase of flight (characterized by its unique set of values as shown for two 
of the scenarios in Figure 5), the model generated an N x N transition probability table, where N 
was set equal to the number of “active” AOIs. For example, as can be seen in Figure 5a in 
scenario 6 (baseline), N was equal to 3 (Instrument panel, IP, navigational display ND, and 
Outside World, OW), whereas in Figure 5b (SVS) N was equal to 4, since the SVS display itself 
defined a now-active AOI 

 In validating our dynamic model, we were able to derive the PDT directly by summing 
the total time of dwells on each AOI and dividing by total trial time for all AOIs. We were then 
able to correlate this model-derived measure with the actual scanning behavior extracted from 
the eye movement records of each pilot, in each of the 4 phases of each scenario. This analysis 
was done first for the average pilot, then for each pilot individually.  

 Modeling the average pilot. We computed the model fitting correlations, based on four 
different versions of the PDT predictions. These four versions involved the presence or absence 
of the effort parameter, and involved either correlating model predictions with the average 
scanning behavior of the 3 pilots, or averaging the correlation values {r} across the three pilots. 
From this exercise a large number of correlations (model fit) values were produced, as reported 
in Wickens, McCarley, and Thomas (2004). Through the analyses of these correlations, we drew 
the following two conclusions: 

1. Methodologically, the correlation with the average pilot scan data (average across phases 
and scenarios r = 0.79) is greater than the average of the pilot correlations (r = 0.60). 

2. The inclusion of the Effort parameter offers no benefit to model fitting, and in fact, in 
some cases, actually reduces the fit. We conclude from this, that pilots were not inhibited 
from making longer scans, if there was valuable and high-bandwidth information to be 
obtained at the more distant AOI. Such a conclusion was also consistent with one drawn 
by Wickens et al. (2003). However a decision was made to retain the effort parameter in 
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our subsequent modeling efforts because of its cognitive plausibility, and because it could 
be valuable in modeling individual differences between pilots. 

 We subsequently decided to proceed by modeling all individual IMC (low visibility) 
scenarios. For each, we could compute the correlation between the predicted and obtained PDT 
(probability of attention allocation). 

 The correlational data of all scenarios again reveal the generally higher correlations for 
the model of the average subject, than for the average of subject models. More important 
however, are the following two observations. 

• The average subject model fits, along with the model fits of individual pilots are all 
generally good, with positive correlations generally in the 0.60 to 0.80 range, although 
there are some exceptions. In particular, scenario 6 shows lower correlations. One 
possibility is that scenario 6 had only two pilots contributing eye movement data, and one 
of these (pilot 3) had very poor individual fits on all three phases. This point will be 
important below. There does not appear to be any common feature that might 
discriminate higher correlations from lower ones (i.e., later versus earlier phases, or SVS 
versus non SVS scenarios). 

•  A review of the scatter plots of the individual pilot data included in Wickens, McCarley 
and Thomas (2004) appeared to reveal one consistent trend, which would account for a 
drop in the correlations. That is, often when the correlation is low, it is because OW 
scanning occurs much more frequently than predicted by the model, whereas rarely if 
ever is out the window (OW) scanning done less than predicted. There are two possible 
explanations for this. First, in flight phases 1 and 2, the OW is invisible (IMC, see Figure 
3), and our model therefore predicts no “relevance” of the OW for either aviating or 
navigating tasks (see Figure 5). However it is likely that a vigilant pilot, knowing that 
visibility will be required for landing, will occasionally glance to the OW to assess 
whether anything is visible. Second, in phases 3 and 4, when the OW is visible (in all but 
scenarios 5 and 9, which were missed approaches because of the low clouds), it could 
reflect the fact that the OW was used both for aviating (the true horizon, rather than the 
instrument panel or SVS horizon) as well as navigating (the true runway, rather than the 
SVS runway), thereby increasing the “relevance” coefficients from the lower values that 
we assumed in Figure 5. The use of redundant sources will be explored in application 3. 

 Modeling individual pilot differences: Validation of SA predictions. As we discussed 
above, there appeared to be differences between pilots in their awareness of the runway offsets in 
scenarios 6 and 10. Hence we also asked if differences in the model fits, as reflected by the 
correlations, might have accounted for the distinct differences between pilot 5 on the one hand, 
who appeared on the basis of the offset-noticing performance data, to have “good SA”, and pilots 
3 and 4, who did not because they either failed to notice, or noticed very late, the misalignments. 
The data provided only modest support for this distinction. For scenario 6 (baseline ILS display), 
phase 2, which would characterize the scan pattern just prior to the information regarding the 
misalignment becoming available, the model fit for pilot 5 (r = .70) is much better than for pilot 
3 (r = -.08). (There were no eye movement data for pilot 4.) More detailed examination of these 
differences revealed that pilot 5 looked at the PFD (a scan necessary to notice the misalignment), 
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whereas pilot 3 did not look there at all during this phase (see Wickens, McCarley, & Thomas, 
2004, Appendix A). 

 For scenario 6, phase 3, similar findings revealed better model fits for pilot 5 (good SA; r 
= .98) than for pilot 3 (poor SA; r = -0.17). More detailed examination of the scan records 
suggests that the lower model fit results because pilot 3 again fails to look at the PFD, where 
evidence of the misalignment is present. We also examined scenario 10 (SVS display) for 
differences, but failed to find them. Some evidence, reported in Wickens, McCarley, and Thomas 
(2004), indicated that the better situation awareness of pilot 5 in this scenario resulted because he 
maintained longer dwells on the outside world at the specific times when it needed to be 
compared with the SVS information, to diagnose the presence of the runway offset. 

 Conclusions: Application 2. From our second application, one major conclusion is that, 
the effort of making longer scans does not appear to inhibit those scans. That is, the model fit is 
just as good (if not better), when driven by only bandwidth and relevance, as when effort is 
included. Such a conclusion is consistent with our findings in previous research (Wickens et al., 
2003), that scanning of instrument rated general aviation pilots can be very effectively modeled 
with only expectancy and value as parameters. As such, it validates the optimality of pilot 
scanning (Moray, 1986). A second conclusion is inherent in the better model fit of the “good” 
SA pilot (#5), relative to #3, a discrimination that provides some validation of the model in 
scenario 6. 

 Our efforts in the second application area were somewhat thwarted primarily by the fact 
that we did not have an ample supply of performance data upon which to draw inferences about 
“situation awareness”. While the two measures we did have, of SA-related delays (“errors”) in 
noticing offsets were compelling, they were only collected once per pilot, and only three 
(sometimes two) pilots provided data, thus creating a very small sample upon which to make 
claims for statistical validity. Nevertheless, this application provided the foundation upon which 
we could address the modeling effort in our third application. 

Application 3: Synthetic Vision Systems (SVS) Modeling Revisited: The Illinois Simulation 

 In the third application, we applied the A-SA model to the visual scanning data of eight 
pilots, (certified flight instructors) flying an SVS simulated landing at the University of Illinois, 
described in detail in Wickens et al. (2004a, 2004b). In a Frasca Simulator, with 120 degree 
outside world visual display, the eight pilots flew a series of curved step down approaches to the 
terrain challenged environment around Yosemite National Park. In four different display 
conditions, presented in counter-balanced order, pilots flew with the displays shown in Figure 6.  
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Figure 6. Four SVS display suites used in application 3. 

 

 All four versions of the display suite shown in Figure 6 contained an SVS depiction of 
the terrain in the upper left, which also hosted traffic visible within its field of view. The two 
versions on the upper row of Figure 6 contained a 3D predictor symbol, a flight path tunnel or 
“highway in the sky” (HITS) to provide guidance, overlaid on the SVS terrain. The two versions 
in the bottom row had no tunnel but provided vertical guidance through a vertical situation 
display (VSD) and compass in the instrument panel and the map path located in the navigational 
display (lower right). The commanded trajectories were provided in a “data link box” at the 
lower left of each of the four panels. The two display suites shown in the left column had the 
instrument panel overlaid upon the SVS display. Those on the right had the panel separated. 
Each display suite is shown in two forms: one with the outside world visible, flying in VMC 
(right) and one without, flying in IMC (left). Flights were conducted in both conditions. 

 We were interested in the extent to which each of the two features (tunnel and overlay) 
defining the four display suites supported tasks of lateral and vertical flight path tracking, of 
detecting traffic presented in the SVS-hosted Cockpit Display of Traffic Information, and 
supported the detection of two critical “off normal” events (Foyle & Hooey, 2003) (the upper left 
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panel in each display suite). (1) A runway offset, similar to that used in application 2 (but only 
encountered once per pilot, when they landed with the SVS suite). As in application 2, this could 
only be detected if the pilot looked outside and realized that the SVS display was directing to a 
landing beside the true runway. (2) A “rogue airplane” trial (Wickens, Helleberg, & Xu, 2002) in 
which the flight path directed the aircraft to fly directly into the flight of another traffic airplane, 
one which was only depicted in the outside world, as if its transponder were inactive. All of these 
provide us with performance measures to be predicted by the model. Visual scanning was 
measured for all eight pilots. (An additional six pilots completed the simulation, but did not have 
valid scanning data). 

 Performance and scanning results. Full details of the performance results are provided 
in Wickens et al. (2004a, 2004b). Importantly, we found that the two tunnel display suites 
supported much better flight path tracking performance, and somewhat better traffic detection 
performance, than did the two display suites using the distributed guidance from VSD on the 
instrument panel and from the Nav display. We also found that the overlay did not improve 
tracking performance, and substantially inhibited traffic detection, because of its creation of 
overlaying clutter. Regarding the off-normal events, in our design eight pilots encountered the 
rogue blimp while flying with the tunnel. Of these, four detected it and four failed to detect it (as 
indicated by the absence of any deviation maneuver in their flight path). Only half of these eight 
pilots had scanning data available, and of these four, there were two “rogue detectors” and two 
non-detectors. Of the twelve pilots who encountered the runway offset with the SVS display, five 
failed to notice it.  

 Figure 7 presents the visual scanning behavior of the eight pilots with valid scan data, as 
a function of the four display conditions, the two visibility conditions (IFR, outside world blank, 
VFR outside world visible), and the five most important AOIs: the four panels of each display 
suite shown in Figure 6, and the outside world. The variance across conditions and across AOIs 
is immediately evident, as is the interaction between these, and these significant effects are 
described in detail in Wickens et al. (2004a, 2004b). Most importantly, we were able to use these 
scanning data for our validation of the A-SA scan model, which we describe as follows. 
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Figure 7. Scanning data (percentage dwell time) for the five areas of interest shown in the right 
legend, as a function of the eight display conditions. 

 

 Application 3: Modeling results of average performance. In the current application we 
were interested in predicting the mean percentage dwell time, on each of the five primary areas 
of interest in the SVS suite (SVS display, Instrument Panel, Nav Display, Datalink panel and 
outside world), both within each of the eight display conditions and averaged across the eight 
conditions. We validated two computational versions of the model. An analytic equation, which 
we describe first, similar to what was done in Wickens et al., 2003, and the dynamic Monte 
Carlo simulation, similar to that used in Applications 1 and 2 above. In the dynamic equation, we 
employed a similar model to that used in the previous applications (Wickens et al., 2003) in 
which: 

(4)  [Predicted Attention to AOI]=BWAOI x Σ(Relevancet-AOI x Valuet) 

where the summation is across all tasks served by an AOI. 

 The only differences from previous applications were that: 

(a) AOI Bandwidth coefficients were directly calculated by measurement of the frequency of 
changes within the dynamic simulator variables from real time simulation runs. This 
provides greater precision than estimating the ordinal value of these values as was done 
in previous model applications (Wickens, McCarley, & Thomas, 2004; Wickens et al., 
2003). 

(b) We established three tasks (with different Values) rather than two, in the following 
hierarchy: (1) Aviate defined attitude control of the plane (level, or appropriate pitch and 
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bank). (2) Navigate defined maintaining the plane on the desired course, and 
climb/descent rate. (3) Hazard awareness defined awareness of the appearance and 
change of traffic aircraft or terrain. 

(c) Unlike application 1, we did not include a salience measure (for the same reasons given 
for application 2: no discrete events), and unlike application 2, we did not include an 
effort parameter (because this had been shown in application 2 to be unnecessary to 
account for scanning of the skilled pilots). 

These predictions were validated using the same correlational techniques as employed in 
application 2. 

 Table 2 presents the parameter matrix showing bandwidth (of AOI), relevance (of AOI to 
task) and value (of task) that was established a priori for the experiment. The eight display 
conditions are listed in the eight columns. 

 Table 3 presents the predictions from the A-SA equation. The “raw data” predictions, in 
the top portion of the table were normalized so that, within each condition the total predicted 
percentage dwells summed to 1.0. These normalized values are presented in the middle portion 
of the table. The bottom table presents the actual percentage dwell time (PDT) data, identical to 
those shown in Figure 7 (i.e., averaged over pilots). At the bottom of Table 3, we present the 
correlations between the model prediction and the obtained PDT values for each condition. 
These correlations are uniformly positive and, except for the last two conditions, with separated 
no-tunnel displays, are all above r = .85. Figure 8 presents a scatter plot of the predicted versus 
obtained PDTs for the five AOIs in all eight conditions collapsed. That is, each point in the 
scatter plot represents a single unique AOI X condition combination. The correlation reflecting 
this global prediction is 0.93, capturing 86% of the variance in scanning behavior. 
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Table 2. The Parameter Matrix for application 3. 
      Experiment Conditions 
      Tunnel Tunnel Tunnel Tunnel Datalink Datalink Datalink Datalink 

      Overlay Overlay Separated Separated Overlay  Overlay Separated Separated

       VMC IMC VMC IMC VMC IMC VMC IMC 

 Parameter     TOV        TOI TSV TSI DOV DOI DSV DSI

 Bandwidth (B) SVS    0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
      IP 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
      ND 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
      DL 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
      OW 0.5 0 0.5 0 0.5 0 0.5 0
                       
 Relevance (R ) SVS  (TR) 1 1 1 1 1 1 1 1
     SVS (NA) 1 1 1 1 1 1 0 0
     SVS (HAZ) 1 1 1 1 1 1 1 1
     IP (TR) 0 0 0 0 0 0 0.5 0.5
     IP (NA) 0 0 0.5 0.5 0 0 1 1
     IP (HAZ) 0 0 0 0 0 0 0 0
AOIs    ND (TR) 0 0 0 0 0 0 0 0
     ND (NA) 0.5 0.5 0.5 0.5 1 1 1 1
     ND (HAZ) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
  DL TR) 0 0 0 0 0 0 0 0(
  DL (NA) 0 0 0 0 1 1 1 1
     DL (HAZ) 0 0 0 0 0 0 0 0
     OW (TR) 0.5 0 0.5 0 0.5 0 0.5 0
     OW (NA) 0.5 0 0.5 0 0.5 0 0.5 0
      OW (HAZ) 0.5 0 0.5 0 0.5 0 0.5 0
              
 Value (V) TR   3        
           NAV 2
   HAZ   1               
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Table 3 
[Predicted Attention to AOI]=BWAOI x Σ(Relevancet-AOI x Valuet) 

Raw Data   TOV TOI TSV TSI DOV DOI DSV DSI 
 p(SVS) 3.72 3.72 3.72 3.72 3.72 3.72 2.48 2.48
  p(IP) 0 0 0.81 0.81 0 0 2.835 2.835
 p(ND) 0.27 0.27 0.27 0.27 0.45 0.45 0.45 0.45
  p(DL) 0 0 0 0 0.1 0.1 0.1 0.1
   p(OW) 1.5 0 1.5 0 1.5 0 1.5 0
  sum 5.49 3.99 6.3 4.8 5.77 4.27 7.365 5.865
  

           
        

Normalized TOV TOI TSV TSI DOV DOI DSV DSI
 p(SVS) 0.68 0.93 0.59 0.78 0.64 0.87 0.34 0.42
   p(IP) 0.00 0.00 0.13 0.17 0.00 0.00 0.38 0.48
 p(ND) 0.05 0.07 0.04 0.06 0.08 0.11 0.06 0.08
  p(DL) 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.02
  p(OW) 0.27 0.00 0.24 0.00 0.26 0.00 0.20 0.00
 sum 1 1 1 1 1 1 1 1

 
Obtained Data   TOV TOI TSV TSI DOV DOI DSV DSI 
 p(SVS) 0.66 0.80 0.68 0.71 0.65 0.68 0.29 0.33
   p(IP) 0.00 0.00 0.05 0.07 0.00 0.00 0.28 0.27
 p(ND) 0.18 0.14 0.15 0.12 0.17 0.18 0.24 0.26
  p(DL) 0.03 0.04 0.04 0.04 0.09 0.11 0.11 0.09
  p(OW) 0.12 0.02 0.07 0.06 0.10 0.03 0.07 0.06
  sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 
Correlations between the model predicted and the obtained data  
  Overall  TOV TOI TSV TSI DOV DOI DSV DSI 
Correlation 0.93 0.93 1.00 0.90 0.98 0.93 0.99 0.57 0.80
R Square 0.86 0.87 0.99 0.81 0.96 0.86 0.98 0.33 0.64
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Figure 8. Scatter plot of model predicted vs. obtained dwell time for application 3. Each data 
point in the plot represents the unique AOIX condition combination with PDT data averaged 
across all eight pilots 

 

 

 Three adjustments to the model were subsequently made, relating to redundancy, 
expected value, and effort. First, regarding redundancy, the nature of the experiment was such 
that in all visual (VMC) conditions, pilots had access to attitude (aviate) information from both 
the SVS display and the outside horizon (OW area of interest). This redundancy was reflected in 
the partial (.5) weight seen in Table 2, for the relevance of the OW to aviating. However if pilots 
did not use this information at all, its relevance should actually be set to 0. Hence we re-ran the 
model with a value of relevance=0 for these four conditions, and revealed improvements of fit, 
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especially for the separated datalink VMC condition (r=.75; up from the previous value of 0.57 
with no loss in model fit for other conditions. See Wickens et al., 2004c for more details). 

 Note that what we have done here is to use the model to test the hypothesis about how 
pilots distributed their visual attention across redundant channels of information. When we set 
non-zero values to each of N redundant channels, we are assuming that pilots are using both 
channels. To the extent that setting 0 values to some redundant channels improves the model fit, 
this implies that pilots are not using those channels. What the data reveal is that the pilots 
extracted little attitude information from the real horizon, even when it was visible in IMC, 
relying instead heavily on the synthetic horizon from the SVS display. As reported above, this 
strategy of “attentional tunneling” nicely revealed by the modeling fit, put the pilots at risk when 
there was information in the outside world that was not revealed within the SVS panel. This risk 
was captured by the less-than-perfect performance of these pilots in detecting either of the off-
normal events, whose detection depended upon OW scanning. 

 Our second modification, regarding expected value was to re-run the model with E + V 
(rather than E x V) representing the combined influence of expectancy (bandwidth) and Value 
(relevance X task priority). This computational difference makes sense from a psychological 
viewpoint if either term reaches zero. The E x V computation predicts no scanning at all to the 
AOI in question, whereas the E + V model assumes some scanning if the other term is greater 
than 0. Thus pilots may look at the blank or static OW (BW = 0) even if there is no movement 
there, in order to check that something might happen. (We inferred such behavior in application 
2 with pilots sampling the OW in IMC). Correspondingly, the pilots’ attention may be drawn to 
an irrelevant but dynamic display. When we re-calculated the correlations using the E + V 
model, all values increased, suggesting that pilots scanned according to the additive, rather than 
multiplicative relationship. In addition, the additive model (E+V) provided better fit for the DSV 
and DSI (data link separated) conditions, especially than does the multiplicative model (E x V).  

 Our third modification, regarding effort, was to examine, as we had done in application 2, 
the extent to which the effort conservation parameter improved the model fit. In order to pursue 
this issue, we first implemented the dynamic Monte-Carlo simulation version of the model, for 
application 3, employing a version in which repeated fixations on a single AOI could be 
generated. This allowed us to capture the model-generated PDT measure for each AOI. We note 
first that with the dynamic model, the correlations between model fit and PDT, reported in Table 
4, are nearly identical to those derived from the static analytic equation (bottom row of Table 3). 
We also generated a scatter plot, pooling the 5 AOIs over the 8 conditions, analogous to the 
rendering in Figure 8, and this produced a nearly identical correlation to that shown in Figure 8 
for the analytic model, again accounting for 86% of the variance. These findings are important in 
indicating that the analytic and dynamic version of the model render identical predictions 
regarding 0 order Markov behavior (the analytic model does not account for first order 
transitions).  
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Table 4. Correlations between model predictions and obtained data, when such predictions were 
generated by the dynamic (Monte-Carlo) version of the A-SA model.  

 

 Overall TOV TOI TSV TSI DOV DOI DSV DSI 

Correlation 0.93 0.93 1.00 0.90 0.98 0.94 0.99 0.55 0.81

R Square 0.86 0.87 0.99 0.81 0.96 0.88 0.97 0.30 0.65

 

 We then proceeded to run seven different versions of the dynamic model, adjusting 
between each of these, the effort penalty imposed for scanning. A “no-effort” version (1) was 
contrasted with: three versions (2-4) in which the effort to transition between any two AOIs 
imposed a penalty (of three different levels), (5) a version in which added penalties were 
imposed for longer distances, (6) a version in which a particular heavy penalty was associated 
with transitions between the outside world, and the four AOIs on the instrument panel and (7) a 
version that combined penalties (5) and (6). This comparison of model fits revealed that the 
simple no-effort model provided the highest mean correlation of any of the alternatives, 
replicating the general results of experiment 2: effort does not appear to inhibit optimal 
scanning. Interestingly, the one model version that came closest to matching the fit of the no-
effort model was version (6), which imposed a penalty solely on transitioning between the 
instrument panel and the outside. 

 Application 3: model validation against individual pilot performance. We then 
sought to determine whether individual pilots differed in the extent to which variance in their 
scanning behavior was captured by the model, and, if so, the extent to which those with higher 
model fits provided better flight task performance. To accomplish this, for each pilot we plotted 
the analytic-predicted versus obtained scan data across the eight conditions and five AOIs much 
as was done for the average data in Figure 8. Each of these eight scatter plots (one per pilot) then 
generated a single correlation value which could be described as that pilots’ “adherence to the 
expected value model of scanning”. The version employed was that in which expectancy was 
added to value (E + V) based on our findings reported above. Each of these eight pilot model fit 
measures (correlations) was associated with (a) the mean RT of that pilot for traffic detection, 
and (b) the mean tracking error measure (integrated lateral and vertical) of that pilot, in order to 
provide two additional correlations: between the model fit correlations and SVS traffic detection 
time, and between model fit and flight path tracking error. Both of these scatter plots and their 
associated correlations are shown in Figure 9. 
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Figure 9a. Scatter plot of pilots’ model fit correlation against the RT to detecting traffic. Each 
point is a single pilot. The correlation between these two measures in the scatter plot is r = -0.58. 
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Figure 9b. Scatter plot between pilot’s model fit and combined lateral and vertical flight path 
tracking error. Correlation is r = -0.88. 
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 Figure 9(a) reflects the modest relation (r = -.58) between model prediction and traffic 
detection latency (p=.13). Figure 9(b) reflects a very strong relation between model prediction 
and integrated flight path tracking error (r = -.88; p= .02). Even the lesser of these correlations is 
supportive of the model, given the relatively low power (N = 8) of the test. Thus pilots who 
better conform to the optimal expected value model of scanning appear to be somewhat 
better at traffic detection, and much better at flight path tracking.  

 We also examined individual differences by studying the records of particular pilots. We 
carried out this exercise in two ways. First, we examined the data to determine the extent to 
which pilots with better model fits were more effective in noticing the two off-normal events 
(Thomas & Wickens, 2004). In this regard our analysis revealed that two of the pilots detected 
both off normal events, and one of the pilots failed to detect either. In both figures (a) and (b), 
one of the “detectors” (who noted both off-normal events), S1, shows the best model fit. 
However the other “detector” (S4) does not, while the single “non-detector” (S8) shows an 
intermediate fit, and therefore this analysis provides only weak evidence that the level of 
optimality predicts off-normal event scanning.  

 Second, we reasoned that those pilots for which inclusion of an effort parameter 
improved the model fit, might actually generate poorer performance, because effort would inhibit 
scanning to areas that should be visited to obtain optimal performance. Only two pilots (#2 and 
#6) showed higher model fits with the effort parameter than without it (and therefore may be 
characterized as “effort- burdened” in their information access). When all 8 pilots were rank 
ordered in terms of the three indices of performance (traffic detection RT, lateral error and 
vertical error), and the rank orders were summed for each pilot across the three indices, the two 
effort-burdened pilots also had the two lowest rank orders of performance, an indication of the 
strong association between these factors. 

 Conclusions: Application 3. In conclusion, our analysis of application 3 revealed that 
pilots’ scan behavior was well captured by the Attention (visual scanning) component of the 
ASA model, both on average (r = .93) and individually (ranging from .84 - .93), whether 
computed by the analytic or the dynamic simulation version of the model. Importantly, we also 
found that those who better conformed to this optimal (without effort) expected value version of 
the model were better fliers and better traffic detectors, and those two whose scanning was 
inhibited by effort were poorer performers. There was furthermore some partial evidence that 
those conforming to the model were better at detecting off normal events; although this linkage 
appeared to be represented only by one pilot, who showed both the best model fit and the best 
tracking error (and third best traffic detection RT). 

 Our results also indicated three aspects regarding variations in the model. First, we 
improved the model fit by changing the assumptions, in this application, regarding the relevance 
to the pilot of perfectly correlated information (the horizon for aviating, visible both outside and 
on the SVS). When it was assumed that pilots only consulted one source (the SVS display), 
model fitting improved. Second, we found that an additive rather than a multiplicative 
relationship between expectancy and value better accounted for the data, an issue that needs to be 
pursued with further research (see Kirlik and Byrne chapter, this volume). Third, as in 
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application 2, incorporation of an effort-inhibition parameter does not generally improve model 
fit, a conclusion that befits well trained expert operators (Moray, 1986). 

General Conclusions 

 The applications of the A-SA model described in this chapter have been defined by two 
important features: (a) whether a dynamic simulation model of the process was employed 
(applications 1 and 2), or whether this was coupled with a static analytical equation (application 
3), and (b) whether an explicit performance-relevant computation of stage 2 and 3 SA was used 
(application 1), or whether the focus was primarily on stage 1 SA (visual scanning and 
information acquisition), using the output of this to predict courser levels of “good” versus “bad” 
SA-based performance (applications 2 and 3). A third feature was the quality of our validation. 
Application 1 did not really involve validation at all, but rather, demonstration of the cognitive 
plausibility of model assumptions. Application 2 involved a weak validation by showing that the 
model accounted for systematic differences in scanning behavior, and that differences in model 
fit were associated with some gross differences in pilot performance. 

 Only in application 3 were we clearly able to conduct a statistical validation of the 
scanning version of the model, and here our success was quite apparent. Not only did the optimal 
form of the model predict scanning for all of our pilots, but those who were more optimal were 
found to perform flight tasks with higher quality. To our knowledge this is the first time that scan 
model optimality has been explicitly linked to pilot performance in a statistically valid fashion, 
although others have done so with more qualitative techniques (e.g., Carbonell, Ward, & 
Senders, 1968; Wickens et al., 2003). The extent to which the improved performance was 
directly related to component tasks, rather than task (attention) management skills in the 
multitask environment cannot be determined with certainty, although the latter would appear to 
be more valid explanation, given the association of situation-awareness and workload in aviation 
(Wickens, 2002). Noteworthy here is the fact that analyses of the same data base, reported in 
Wickens et al. (2004b) failed to reveal consistent individual differences linkages between pilot 
performance and other basic measures of visual scanning (e.g., percentage dwell time on the 
SVS display). Thus the model serves to incorporate the collective network of scanning forces 
across various AOIs, in a way that scan measures to a single AOI cannot do, and it is this 
collective force that drives scanning in an optimal fashion. 

 There remain at least two important directions in which our modeling effort should 
proceed. First, our focus has been on the overall percentage dwell time in various AOIs, rather 
than the mean dwell duration. While these two measures are often correlated, the correlation is 
not perfect, and the analysis of off-normal failure detection events in application 2 (Wickens, 
McCarley & Thomas, 2004), certainly suggested some critical distinctions in SA associated with 
dwell duration. Second, our model explicitly assumes a relatively linear relationship between 
scanning to a particular AOI and performance. It may be on the other hand that certain large non-
linear penalties might be built into zero scans at particular AOIs. That is, for example, the 
difference between perhaps 0 and 5% scan would have a much greater impact on performance 
than the difference between 5 and 10%. This approach would incorporate certain non-linear 
“costs of neglect”, another feature suggested by the fine-grained analysis of the performance of 
certain pilots in application 3 (see Thomas & Wickens, 2004), and may account for the failure to 
find our model here, predicting detection of off normal events. 
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 On the whole, our results suggest a promising way of looking at how attention supports 
pilot performance, and how attention allocation breakdowns thwart aviation safety. In projecting 
the future of aviation, we see a continuous growth in the need for attention models, as advances 
in automation continue to leave the pilot with less to do, other than to supervise and monitor, via 
effective attention allocation, the airplane and air space situation under automation control. 
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