

Let's Talk About Disruption Management

Disruption Management

- Weather is the primary disruptive element in the National Airspace System
- Must detect, analyze, coordinate, and take action

Causes of National Aviation System Delays (January - September, 2016)

Disruption Management

Detection

 Forecasting and detection tools for convective weather and winter storms are fairly mature

Analysis

Analysis and prediction of effects are often subjective and inaccurate

Coordination/collaboration

- There are few ways that dispatcher, pilot, controller, and airport personnel can interact to devise a mutually beneficial plan

Action

- Communication of actions is dispatcher-to-pilot-to-controller or controller-to-pilot
- Some key personnel only see the indirect effects of decisions regarding weather

Disruption Management

Detection

- Develop NASA tools for detection of clear air turbulence

Analysis

- Continue to work on NASA concepts such as Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and the Flight Awareness Collaboration Tool
- Create new tools requested by the airline industry

Coordination/collaboration

- Using high-bandwidth data exchange, improve the communication between dispatcher, pilot, controller, and airport staff

Action

 Improve the sharing of and review of decisions by using enhanced data communications between dispatcher, pilot, controller, and airport staff

Dispatcher Workload Study

Richard Mogford, Pam Munro NASA Ames/Feiji

richard.Mogford@nasa.gov pmunro@feijiconsulting.com

Dispatcher Workload Study

- Suggestions for a human factors study of dispatcher tasks after the Airline Operations Workshop at NASA Ames in August 2016
- Partnered with Alaska Airlines and Delta Airlines
- Will visit airline operations control centers to shadow dispatchers during various shifts across several days
- Trying to better understand the conditions for dispatchers across shifts in various configurations
 - Extended operations flights
 - Transcontinental flights
 - Weather events
 - Hubs/regional
- Will allow for innovation and research by leveraging current technology used by the dispatcher
- Study will take place starting in the Spring of 2017 at Delta

Flight Awareness Collaboration Tool

Richard Mogford, Cody Evans NASA Ames/SJSURF

<u>richard.mogford@nasa.gov</u> <u>cody.a.evans@nasa.gov</u>

Flight Awareness Collaboration Tool

- Developing the "Flight Awareness Collaboration Tool" (FACT)
- Concentrates information about winter weather events on one display
- Includes predictive tools
- Supports collaboration between airline operations center, air traffic control, airport authority, and de-icing operators

FACT Screen

Winter Weather Airport Capacity Model

FACT Primary Map View

FACT Surface Map View

FACT Information View

FACT Information View (Graphical)

FACT Communication View (MyQueue)

FACT Communication View (Chat)

Flight Awareness Collaboration Tool Status

- User interface designed completed and web-based prototype under development
- Winter Weather Airport Capacity Model being evaluated at several facilities
- Plan to begin showing FACT to the airlines in July 2017 to request feedback on functionality and user interface design
- Will visit Southwest Airlines in June to review FACT and other research issues
- Creating a forum for NASA/industry discussion of operational and research needs

Human-autonomy Teaming with the Dispatcher

Summer Brandt, Joel Lachter SJSURF/NASA Ames

<u>summer.l.brandt@nasa.gov</u> <u>joel.lachter@nasa.gov</u>

Problems with Automation

Brittle

 Automation often operates well for a range of situations but requires human intervention to handle boundary conditions

Opaque

 Automation interfaces often do not facilitate understanding or tracking of the system

Miscalibrated trust

- Disuse and misuse of automation have lead to real-world mishaps and tragedies
- Out—of-the-loop loss of situation awareness
 - Trade-off: automation helps manual performance and workload but recovering from automation failure is often worse

Human-autonomy Teaming with the Dispatcher

Brittle

Negotiated decisions puts a layer of human flexibility into system behavior

Opaque

- Requires that systems be designed to be transparent and present rationales and confidence in solutions
- Communication should be in terms the operator can easily understand (shared language)
- Miscalibrated trust
 - Automation display of rationale helps human operator know when to trust it
- Out—of-the-loop loss of situation awareness
 - Keep operator in control: adaptable, not adaptive automation
 - Greater interaction (e.g., negotiation) with automation reduces likelihood of being out of the loop

Human-autonomy Teaming and the Dispatcher

Flight list with Autonomous Constrained Flight Planner

Human-autonomy Teaming and the Dispatcher

- Transparency: Divert reasoning and factor weights are displayed
- Negotiation/dialog: Operators can change factor weights to match their priorities
- Shared language/communication:
 Numeric output from the
 Autonomous Constrained Flight
 Planner was found to be misleading
 by pilots
- Display now uses English categorical descriptions

Autonomous Constrained Flight Planner

Human-autonomy Teaming and the Dispatcher

- Participants, with the help of automation, monitored 30 aircraft
- Alerted pilots when
 - Aircraft was off path or pilot failed to comply with clearances
 - Significant weather events affect aircraft trajectory
 - Pilot failed to act on EICAS alerts
- Rerouted aircraft when
 - Weather impacted the route
 - System failures or medical events force diversions
- Ran with and without human-autonomy teaming (HAT) tools

Human Autonomy Teaming and the Dispatcher

- Participants preferred the HAT condition overall (rated 8.5 out of 9)
- HAT displays and automation preferred for keeping up with operationally important issues (rated 8.7 out of 9)
- HAT displays and automation provided enough situational awareness to complete the task (rated 8.7 out of 9)
- HAT displays and automation reduced the workload relative to no HAT (rated 8.3 out of 9)

Infrasound Turbulence Detection

Qamar Shams NASA Langley

qamar.a.shams@nasa.gov

Infrasound Turbulence Detection Feasibility Study

- Partnering with University Corporation for Atmospheric Research to determine if clear air turbulence detection by infrasonic microphone arrays is feasible
- Dr. Qamar Shams at NASA Langley has an array set up but additional arrays will increase accuracy
- Study objectives:
 - What are the spectral characteristics of the acoustic energy?
 - How are the spectral characteristics of the acoustic energy related to turbulence intensity metrics (e.g., energy dissipation rate), that in turn can be related to aircraft response?
 - What are the transmission properties of the acoustic signal, i.e., attenuation, refraction, and diffraction, as the acoustic waves propagate from the source to the receivers?
 - Given proposed geometries of a receiver array, what are the temporal and spatial accuracies that can be achieved?
 - What are the appropriate signal processing methods to ensure adequate detection and minimal false alarms?

Infrasound Clear Air Turbulence Detection Feasibility

Microphone Array and Detection Example

Infrasound Turbulence Detection

Clear Air Turbulence Detection Event

Traffic Aware Strategic Aircrew Requests

David Wing NASA Langley david.wing@nasa.gov

Traffic Aware Strategic Aircrew Requests

Enhanced User Request Process leveraging Cockpit Automation and Networked Connectivity to real-time operational data to optimize an aircraft's trajectory en route

Traffic Aware Strategic Aircrew Requests

Visual Detection in Aircraft Safety Zone

Visual Detection in Aircraft Safety Zone

- Develop approaches to reducing ground vehicle incidents
 - Will analyze ramp area video recordings provided by Southwest Airlines
 - Determine if ground vehicle incursion into aircraft safety zone can be detected or prevented

Accident Percentages in Aircraft Clearance Zones

Questions?

Cody Evans

cody.a.evans@nasa.gov

Work With Us!

- Dispatcher Workload Study
 - pmunro@feijiconsulting.com
- FACT
 - <u>richard.mogford@nasa.gov</u>
- UAS/Ground Station Research
 - <u>summer.l.brandt@nasa.gov</u>
- Clear Air Turbulence Detection Research
 - qamar.a.shams@nasa.gov
- David Wing
 - <u>david.wing@nasa.gov</u>
- Maintenance/Ground Ops Research
 - <u>alan.hobbs@nasa.gov</u>