
2351-9789 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of AHFE Conference
doi: 10.1016/j.promfg.2015.07.853 

 Procedia Manufacturing   3  ( 2015 )  3070 – 3077 

Available online at www.sciencedirect.com 

ScienceDirect

6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the 
Affiliated Conferences, AHFE 2015

Evaluation of a recommender system for single pilot operations

Arik-Quang V. Daoa,d,*, Kolina Koltaib, Samantha D. Calsb, Summer L. Brandta,d,
Joel Lachtera,d, Michael Matessac, David E. Smithd, Vernol Battistea,d,

Walter W. Johnsond

aSan Jose State University, San Jose, CA 95112, USA
bCalifornia State University, Northridge, Northridge, CA 91330, USA

cRockwell-Collins, Cedar Rapids, IA 52498, USA
dNASA, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

This paper discusses the quality of a recommender system implemented in a simulation to assist with choosing a diversionary 
airport for distressed aircraft. In the third of the series of studies investigating the feasibility of ground-supported single pilot 
operations (SPO) a recommender system was used by 35 airline pilots as an aid for selecting diversionary airports. These pilots, 
acting as ground operators, used the recommender system from a ground station when off-nominal events required them to 
provide ground support to a single piloted aircraft. The unique circumstances imposed by each of the scenarios required the 
ground operators, together with the recommender system, to consider the relative importance of different factors when 
recommending an airport. Post-trial questionnaires were used to evaluate the recommender system. Results indicated that the 
pilots did not find the recommender system very transparent and did not always trust its initial recommendation. However, pilots 
did appear to find the recommender system to be effective in supporting them with the high workload in off nominal situations,
and interactions with the system appear to have been satisfactory. Pilots also reported in post simulation surveys a desire to have 
better explanations for those recommendations. Findings will inform the development of future iterations of the recommender 
system, as well as influence SPO procedures and further development of a prototype ground station. 
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1. Introduction

This paper examines operator use and evaluations of a recommender system implemented in a simulation to 
assist in choosing a diversionary airport for distressed aircraft. The work described here was exploratory and served 
primarily to inform future designs of the recommender system for implementation in reduced crew operations/single 
pilot operations (RCO/SPO) [1,2]. In the following sections we define the recommender system and briefly describe
NASA’s RCO/SPO concept, the context for which it was adapted and implemented. We conclude by reporting data 
collected from questionnaires designed to elicit feedback from participants about whether they agreed with the 
recommendations from the system. In addition, we inquired about what information influenced whether they agreed 
or disagreed with the recommendations and report that as well.

1.1. What is a recommender system?

A recommender system is an intelligent application that supports human information-seeking tasks by suggesting 
products, services, and information that best suit the needs and preferences of a user [3]. State-of-the-art 
recommender systems support rather than automate decision-making by employing complex algorithms that 
incorporate preferences, rules, and heuristics to reduce a very large variety of options into a smaller more 
manageable subset. This approach, as opposed to presenting a single “best” solution, allows the user to select from 
among that subset based on information or preferences that may not be included in the algorithm. The current 
authors view the development and growing popularity of recommender systems as an acknowledgement that many 
systems can profit by allowing humans to augment machine recommendations with quantitative and qualitative 
information and preferences not captured in the machine algorithm. While advanced recommender systems have 
found their initial home in the commercial domain, where they help people make buying decisions in the presence of 
a large number of alternatives, these systems have potential value in other domains. For example, in air 
transportation, pilots may be able to take advantage of recommenders to reduce the decision-making time for safety 
critical situations. However, they must be able to understand the basis for the choices being presented to them before 
choosing among those alternatives, as they will ultimately remain responsible for the flight. In the next section we 
introduce the Emergency Landing Planner (ELP), an air transportation recommender system that generates 
recommendations for emergency landing sites and provides explanations about the primary factors influencing the 
risk associated with each of the alternatives.

1.2. The Emergency Landing Planner (ELP)

The ELP is a recommender system developed at NASA to assist pilots in choosing the best emergency landing 
site when the aircraft is damaged or suffering from control system failures [4,5]. The ELP was initially designed for 
onboard use in transport category aircraft. Interface to the system was through the Flight Management System 
(FMS) Cockpit Display Unit (CDU), with the system being invoked through a prompt on the CDU 
Departure/Arrival page. Landing site recommendations were displayed on the CDU on a new page that allowed 
selection and examination of each alternative. Selection of an alternative caused it to become the Modified Flight 
Plan with the proposed route being displayed on the aircraft Navigation Display (ND). In this way, pilots could 
inspect several alternative recommendations before deciding on the destination and route. Once a selected route was 
executed, it became the Active Flight Plan in the FMS. 

Landing site recommendations generated by ELP were rank ordered according to a risk value representing 
expected loss of life; including passenger, crew and ground casualties. We briefly mention the inputs influencing the 
risk calculation, but for a more extensive description of the risk model we encourage readers to see Meuleau et al. 
[5]. Three categories of factors served as inputs for the risk computation: (1) en route risk; (2) approach risk; (3) 
runway risk; and (4) airport risk. The primary factors considered for en route risk were controllability of the aircraft, 
distance and time to the site, complexity of the flight path, and weather along the route. Approach risk took into 
consideration weather along the approach path, characteristics of the instrument approach, ceiling and visibility at 
the airport, and population along the approach path. Runway risk included factors such as length and width of the 
runway, landing speed, and relative wind speed and direction. Finally, airport risk incorporated the availability of 
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emergency facilities at and near the site. The routes generated by the ELP specified paths from the aircraft’s current 
position to a destination runway. The following obstacles were considered in the route computations: (1) terrain; (2) 
hazardous weather; and (3) special use airspace.

Due to the limited screen real estate on the CDU, the ELP designers had to be selective about what information 
could be displayed to explain the recommendations. Explanations were limited to a short list of two character 
abbreviations indicating the principal risks associated with each option. For example, the code “CE” indicated that 
cloud ceiling was close to minimums for the approach and was a principle risk associated with the option. Had the 
screen real estate been larger other valuable information such as actual ceiling, visibility and winds could had been 
displayed for each option [4]. In the next section we describe modifications to the ELP for supporting a distressed 
aircraft in single pilot operations; where the ELP was hosted at a ground station that provided the needed screen area 
to support enhanced explanations.

2. An ELP for single pilot operations (SPO)

In an ongoing series of studies, NASA has been investigating the feasibility of single pilot operations (SPO) 
where the flight crew is reduced from two to one for large transport aircraft that operate under Part 121 of the 
Federal Airline Regulations (FARs) [1,2]. Cost-savings are the primary motivation for these operations. However, if 
implemented, SPO may also serve as a timely solution to a shortage in pilots predicted to occur over the next two 
decades [6]. The studies conducted by NASA aim to discover issues related to removing a crewmember from the 
flight deck, as well as investigate the efficacy of any technology used to address those issues. One approach is to re-
allocate first officer roles to an operator at a ground station. There is currently no specification on whether this 
ground operator be a pilot, a dispatcher or some other uniquely trained personnel. However, aside from the training 
required, the technology supporting the ground operator role must compensate for the absence of visual cues
normally used in communication when the flight crew is collocated; as well as facilitate collaboration so that the 
operations remain safe when the crew is separated. In light of those considerations, a ground station was developed 
as part of a system for evaluating SPO. Consistent with the economic justification for SPO, the ground station was 
designed to provide services to multiple aircraft, or remain on standby until an increase in workload triggered by 
off-nominal events necessitated collaboration with the flight deck. Along with a suite of other tools provided to 
support remote crew collaboration, participants in the simulation were asked to interact with a ground station 
version of the ELP to help resolve scripted off-nominal or high workload events by selecting a diversionary airport, 
and later provide feedback about their experience with the system.

The simulation mentioned above was the third in a series investigating SPO (SPO III). The simulation system 
was composed of a mid-fidelity 777 flight simulator, desktop flight simulators, controller positions, remote ground 
stations, and a simulation management and control position [7]. The Multi-Aircraft Control System (MACS) [8]
provided the primary simulation architecture that generated and displayed scripted air traffic information. MACS
also provided the flight deck and controller interfaces. Experiment confederates composed of laboratory staff 
members followed scripts from controller and flight deck positions to provide fidelity to the simulation. Subject 
matter experts (SMEs), who were experienced airline pilots, served as confederates who flew alone at flight deck 
stations specifically designed for open communication with experiment participants at the ground station. The 
SME’s flight deck Mode Control Panel (MCP), CDU, ND and many of the other flight deck displays and 
instruments were replicated at the ground station (Figure 1a). The ground station also hosted flight tracking tools 
and the ELP on a display to the right of the operator (Figure 1b). Finally, tools that helped the remote crews keep 
track of their roles (pilot flying vs pilot not flying) and responsibilities with respects to who was handling what 
controls (i.e., speed, heading, altitude, or CDU) were presented to pilots on displays in area “c” of Figure 1. The 
principle tool of interest in this paper is the ELP. For a complete description of the tools in Figure 1a-b, see Brandt
et al. [7]. For details regarding the collaboration tools in Figure 1c, see Ligda et al. [9].

The ground station version of ELP was invoked using a dedicated button located on the lower left corner of the 
Traffic Situation Display (TSD) in area “b” of Figure 1. When engaged in supporting one of various high workload 
or off nominal situations (e.g., wheel well fire), the ground operator depressed the ELP button to generate a rank-
ordered list of options to discuss with the remote crew member as shown in Figure 1d. Note that an airport may 
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Fig. 1. The SPO III Ground Station: (a) replicated flight deck displays for the chosen aircraft; (b) flight tracking displays with ELP 
recommendations; and (c) crew collaboration tools including sharable charts; (d) the Traffic Situation Display and Emergency Landing Planner 
recommendations (lower left corner).

appear more than once in the list with different runways having different risk. Once the list of landing options was
displayed the ground operator could then toggle between options to view corresponding graphical and textual 
explanations. The visual information and textual information highlighted the geographical location of all alternative 
recommendations on the TSD and graphically depicted the choices in terms of proximity to airports, complexity of 
the route, and constraints imposed by weather. All airports within range on the TSD scope were displayed, but 
dimmed out, to reduce clutter. Airports recommended by the ELP were coded in green to highlight their 
geographical location. Routes for a toggled option on the ELP list were rendered on the TSD as a route drawn from 
the nose of the aircraft symbol to the recommended airport. The current route was shown concurrent with proposed 
routes. When the flight deck executes a recommendation it becomes the active route and changes to magenta on the 
TSD. The risk model used in the ELP designed for SPO III used the same input factors used in the previous flight 
deck version [5].

3. Evaluation of the ELP

This evaluation of the ELP was an exploratory and informal add-on to a larger study [7] in which scripted 
procedures required ground station pilots to ultimately select the ELP’s top recommendation. This report draws on 
post-trial questionnaire data gathered from 35 participants, all professional pilots that focused on ELP issues. There 
were 210 responses gathered for each of these post-trial ELP related questions. Specifically, these questions were 
aimed at evaluating the quality of the ELP recommendations based on whether the pilots agreed with the solutions 
being provided by the system and whether ELP provided explanations revealed the information they needed to 
understand the recommendations. Tintarev and Masthoff [10] provide a set of criteria that serve to conveniently 
classify our evaluations. The criteria are:

Trust;
Transparency;
Scrutability;
Effectiveness;
Persuasiveness;
Efficiency;
Satisfaction.

This report only addresses trust, transparency, effectiveness and efficiency. We did not address scrutability, 
persuasiveness, and efficiency.

(d)
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3.1. Trust and transparency

Vulnerability, a common element in most definitions of trust [11–13], is particularly critical to situations of 
uncertainty [14]. Users are vulnerable frequently when they rely on automation; especially as automation 
complexity rises. The complete and timely understanding of complex automation can be impossible due to the 
limitations of the human perceptual and cognitive system. Even when possible, the advantages of automation would
often be lost if the human must commit cognitive resources to monitoring such complexity [15]. For recommender 
systems it would be overwhelming to review all options considered by the system before presenting the 
recommended subset, and even taking the time to fully vet this subset can undo the automation’s benefits. Thus, out 
of practicality, trust must guide reliance while much of the system remains invisible to the human [16]. Trust 
development requires time [14]. During that time users build trust in the system by learning under what conditions it 
fails and under what conditions it succeeds in accomplishing the users goals [17]. Trust is considered calibrated 
when it is sensitive to contexts in which the system fails or performs well [14]. The extent to which the system 
provides the information needed to build such trust is the system’s transparency.

Tintarev [10] suggests that transparency explains how the system works. Similarly, Kim and Hinds [18] referred 
to transparency as understanding “why a machine behaves in an unexpected manner.” Other definitions stress 
knowing the limits of the system through reliability information [19,20]. Chen et al. [21] defined automation 
transparency as “…the descriptive quality of an interface pertaining to its abilities to afford an operator 
comprehension about an intelligent agent’s intent, performance, future plans, and reasoning processes.” Two 
common factors that influence transparency can be inferred from these definitions: information about the system;
and the human’s ability to understand the information. Requiring a human to process too much information will 
impede the development of understanding. Too little and there is simply not enough information for transparency 
and the subsequent formation of trust. Evaluations of transparency for recommender systems should address
whether the information actually improves understanding.

Although the scenarios required that the flight-deck confederates eventually command the execution of the top 
recommendation, the ground pilots, managed the ELP and transmitted its recommendations to the flight deck. 
Insight into whether pilots trusted the ELP to provide the best recommendation can come from how often they
examined the information about other airports/runways, i.e. their acceptance of vulnerability. When asked, “How 
many other airports/runways did you consider?” over 80% of the pilots checked at least one other airport/runway
before accepting the top choice (Figure 2a), although of these 43% only checked one airport/runway. Based on this 
the pilots appear to have had a fair degree of trust in the recommender system.

However, after looking at the information about other airports/runways, did pilots understand why the ELP 
produce the choices that it did? On the questionnaire, the pilots chose from a set of reasons (distance, runway length 
/ width, weather, and approaches) for why the top recommendation was selected. These reasons, with the exception 
of “Other”, mirrored the factors feeding into the ELP risk model, are shown in Figure 2b. Reasons for the top choice 
listed under “Other” included medical facilities, nearest suitable airport, familiarity with the airport, yielded to the 
captain’s decision, and the nature of the emergency. In 73% of the trials pilots indicated that they understood why 

Fig. 2. (a) percent of each response category for number of airports/runways considered; (b) proportion of trials a factor was reported as a reason 
for the top choice.
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(a) (b)

Fig. 3. (a) proportion of trials where pilots agreed with appropriateness of the top recommendation; (b) proportion of trials where pilots agreed 
that the top recommendation would assure a successful landing.

the top recommendation was chosen – but 27% apparently did not. It is also important that experience, not system 
transparency, may account for much of the pilots’ ability to understand the reasons for the top recommendation.

3.2. Effectiveness

The effectiveness of the recommender system is the extent to which the system helped users make good decisions 
[10]. We asked three questions to acquire some insight into the effectiveness of the ELP. They were:

1. Did you deviate from the ELP provided path;
2. Was the top recommended airport/runway appropriate;
3. Did the selected airport/runway help assure a successful landing?

Responses to Question 1 showed that on 74% of the trials there were no subsequent changes to the top route 
recommended by the ELP. Responses to Question 2, showed that pilots mostly agreed with the appropriateness of 
the top recommendation (Figure 3a). Similarly, responses to Question 3 also supported effectiveness, showing that 
pilots were fairly confident that the top choice would result in a safe landing (Figure 3b).

3.3. Satisfaction

Satisfaction indicates whether interaction with the ELP was easy [10]. Two questions attempted to address 
satisfaction:

1. Would it be easy for the ground pilot to generate and choose the top recommendation without ELP assistance;
2. Did the recommender ease the burden of responding to the emergency?

Responses to Question 4 show that on 43% of the trials pilots felt they could have chosen a landing location on 
their own easily (Figure 4a). However, in 39% of the trials pilots failed to respond, and it is unclear if the pilots were 
simply unsure or if they had missed the question. However, no other question had a similar high frequency of absent 
responses, lending credence to the pilots not being fully confident that they could have done as well as the ELP.
Supporting this, responses to Question 5 showed that, despite responses to Question 4, pilots thought that the ELP 
did help make it easier to respond to the overall emergency situation with responses gravitating to agree (40%) and 
strongly agree (20%) on most trials (Figure 4b). Here pilots failed to respond to the question on only 2% of the 
trials.
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Fig. 4. (a) proportion of trials pilots felt they would have been able to pick an airport just as easily as the recommender; (b) proportion of trials 
pilots disagreed or agreed with whether the ELP eased overall handling of the emergency.

3.4. Post simulation debrief

At the end of each testing day we gathered pilot comments regarding their experience with ELP. Overall, pilots 
thought the ELP was a useful tool. We quote some of the comments that reflect that interpretation below.

“Good tool – reduces some of the workload.”
“Good starting point for decision-making options.”
“Useful, once I remembered it was there.”

The remaining comments stressed that the ELP still needed to provide more explanation for its recommendations.

“No clue why the recommendations were picked.”
“It didn’t tell me why it didn’t take the closest airport as the nearest suitable.”
“Transparency, did not understand the criteria for recommendations.”
“Want to know why [the ELP] ordered the recommendation that way.”
“Unsure of algorithm.”
“Not familiar with criteria.”
“Tool requires more practice to improve understanding of why it made selections.”

4. Conclusion

This paper examined the quality of the ELP recommender system as implemented in a simulation to assist ground 
operators with choosing a diversionary airport for distressed aircraft. Overall, the pilot feedback was positive 
regarding the utility of the ELP. However, in open ended debriefing discussions pilots frequently stressed that the 
system needed to be more transparent about how it was producing the recommendations and what inputs influenced
the rank-ordering. Post-trial questions were classified according to 4 different criteria for evaluating recommender 
systems: (1) trust; (2) transparency; (3) effectiveness; and (4) satisfaction [10]. Only limited conclusions can be 
drawn from post-trial data. The fact that pilots typically only checked 1 other alternative before complying with the 
command to execute the top recommendation seems to point to a reasonable amount of trust in the system. 
However, the infrequency with which they executed the top choice without checking other alternatives might 
support an argument for calibrated trust in the ELP. We did not expect many instances where pilots committed to a 
choice without verifying against other options due to their professional training. Pilots seemed to know what 
information influenced the recommendations presented to them, but it was unclear if this knowledge came from
experience or if that information came from system transparency. Comments made during the debriefing did make it 
clear that the ELP still lacked transparency; the pilots requested that the system provide more explanation for the 
recommendations and how the choices were ordered. Post-trial questionnaire results do suggest that the ELP was 
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effective and pilots found it useful. Pilots favored the top recommendations generated by the ELP and in most cases 
did not make changes to the route once they had executed what was provided by the system. They said that the ELP 
did lighten the workload associated with handling the emergency events, and around 40% indicated that choosing a
diversionary airport by itself was a task that they could have easily done without the ELP - but this must be weighed 
against the fact that about 40% of the time they did not provide an answer to that question.

Enhancements to the ELP are already under way for implementation in a follow-up simulation to demonstrate
tools and concepts of operations for what will now be called reduced crew operations (RCO). In the RCO iteration
the ELP (now referred to as the Autonomous Constrained Flight Planner - ACFP to reflect its new capabilities and 
features) will allow the user to provide new inputs. These will constrain the results according to starting state of the 
aircraft (e.g., position, altitude, speed etc.), the type of situation (e.g., normal, deviation, emergency type), as well as 
specific airports to consider, runway-length, distance to airport, time to airport, the type of approach, and altitude
limitations. Operators will also be able to provide weights for a predefined set of factors: (1) en 
route/approach/landing/airport risk; (2) medical facilities; (3) distance; (4) fuel usage; (5) time; and (6) convenience. 
These weights and constraints will influence the results of the ACFP recommender and, because the operators will 
have provided the information, the belief is that the system will be more transparent. Finally, the ACFP will have 
preconfigured constraints and preferences for a defined set of situations: (1) fire, (2) medical emergency, (3) pilot 
incapacitation, and (4) weather diversions. 

Acknowledgements

Support for this work was provided by the NASA Aviation Safety and Airspace Programs.

References

[1] J. Lachter, S.L. Brandt, V. Battiste, S. V. Ligda, M. Matessa, W.W. Johnson, in:, Proc. HCI-Aero 2014 Conf., Silicon Valley, 2014.
[2] J. Lachter, V. Battiste, M. Matessa, Q. Dao, R. Koteskey, W. Johnson, Proc. HCI-Aero 2014 Conf. (2014).
[3] T. Mahmood, F. Ricci, Proc. 20th ACM Conf. Hypertext Hypermedia - HT ’09 (2009) 73.
[4] N. Meuleau, C. Neukom, C. Plaunt, D.E. Smith, T. Smith, in:, ICAPS-11 Sched. Plan. Appl. Work., 2011, pp. 1–8.
[5] N. Meuleau, C. Plaunt, D.E. Smith, in:, Proc. Twenty First Innov. Appl. Artif. Intell. Conf., AAAI Press, 2009.
[6] D. Gates, The Seattle Times (2014).
[7] S.L. Brandt, J. Lachter, V. Battiste, W.W. Johhson, in:, Pap. to Appear Proc. 6th Int. Conf. Appl. Hum. Factors Ergon., Las Vegas, NV, 2015.
[8] T. Prevot, Int. Conf. Human-Computer Interact. Aeronaut. (HCI Aero) (2002) 149.
[9] S. V. Ligda, U. Fischer, K. Mosier, M. Matessa, V. Battiste, W.W. Johnson, in:, Pap. to Appear Proc. 17th Int. Conf. Human-Computer 

Interact., Los Angeles, CA, 2015.
[10] N. Tintarev, J. Masthoff, in:, F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (Eds.), Recomm. Syst. Handb., Springer, New York, 2011, pp. 

479–507.
[11] J.L. Johns, J. Adv. Nurs. 24 (n.d.) 76.
[12] R.C. Mayer, J.H. Davis, F.D. Schoorman, 20 (2014) 709.
[13] D. Rousseau, S. Sitkin, R. Burt, C. Camerer, Acad. Manag. Rev. 23 (1998) 393.
[14] J.D. Lee, K.A. See, Hum. Factors 46 (2004) 50.
[15] C. Miller, in:, R. Shumaker, S. Lackey (Eds.), Virtual, Augment. Mix. Reality. Des. Dev. Virtual Augment. Environ. SE - 19, Springer 

International Publishing, 2014, pp. 191–202.
[16] J.B. Lyons, C.K. Stokes, Hum. Factors J. Hum. Factors Ergon. Soc. 54 (2011) 112.
[17] J.B. Lyons, in:, Trust Auton. Syst. Pap. from 2013 AAAI Spring Symp., 2013, pp. 48–53.
[18] T. Kim, P. Hinds, in:, Proc. 15th IEEE Int. Symp. Robot Hum. Interact. Commun., 2006, pp. 80–85.
[19] M.T. Dzindolet, S.A. Peterson, R.A. Pomranky, L.G. Pierce, H.P. Beck, Int. J. Hum.-Comput. Stud. 58 (2003) 697.
[20] L. Wang, G. A. Jamieson, J.G. Hollands, Hum. Factors J. Hum. Factors Ergon. Soc. 51 (2009) 281.
[21] J.Y.C. Chen, M. Boyce, J. Wright, K. Procci, M. Barnes, ARL Tech. Rep. (n.d.). 


