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Abstract
Human eye movements typically consist of a series of

fixations (during which the eye is relatively still), linked
by saccades, which rapidly reorient the direction of gaze to
a new location. The locations fixated usually indicate the
allocation of attention, and are useful when making infer-
ences concerning state awareness in complex information
environments such as an aircraft cockpit. Identification of
fixation events is straightforward when measurement noise
is low (on the order of the physiological noise, typically a
few arc minutes), but becomes increasingly challenging as
noise increases to the levels encountered in current video-
based remote tracking systems, which are suitable for in-
stallation in flight simulators. Here we present a novel
method for identification of fixations and microsaccades in
noisy eye position records. We assume that the data has
first been processed with a velocity-based saccade detector,
so that we are left with relatively short intervals of rela-
tively constant data. The method attempts to fit the signal
with a piece-wise constant function, splitting the data into
two sub-intervals to produce the least RMS error in the fit.
Proposed splits are accepted or rejected on the basis of a
statistical t-test, with the level of significance providing a
single parameter controlling the sensitivity. We compare
the method to other position-based techniques, such as the
classic ”dispersion” method (which grows fixations rather
than splitting as in our method).

Introduction
The analysis of eye movement data begins with the

parsing of the raw signals into fixations, saccades, and
smooth movements. In this paper, we focus on the identi-
fication of fixations. In particular, we are concerned with
the discrimination of multiple nearby fixations, when the
distance between successive fixations is comparable to the
noise level of the tracking system.

A commonly-used approach is known as the disper-
sion algorithm [1]. In this method, fixations are grown
by adding samples whose distance from the cluster mean
is less than a predefined threshold. The determination of
this threshold can be somewhat problematic; too small of a
threshold will produce spurious fixations, while too large of
a threshold will miss small saccades. While a method has
been proposed to determine an optimal threshold based
on repeatability [2], here we present a method allowing di-
rect control of the false alarm rate by fixing the significance
level of a statistical test used to accept a proposed saccade.

Methods
The proposed method was designed to deal with in-

tervals of signal that remain after segmentation at large

saccades, which may be identified using a velocity criterion
[3]. In this paper, we restrict our attention to the analy-
sis of synthetic data, which consist of piece-wise-constant
signals corrupted by the addition of Gaussian-distributed
white noise. An example of such a signal is shown in figure
1. We first consider one-dimensional signals; generalization
to two dimensions can be done in various ways, discussed
at the end of this section.

Figure 1. The heavy black trace shows a ”ground truth” signal
consisting of a saccade (step) with an amplitude of 2; the overlaid
red trace shows a sample measurement corrupted by noise with a
standard deviation of 1. The V-shaped blue trace shows the root-
mean-square error of the fit of a piece-wise constant function, as a
function of the split point. The nearly flat blue traces above the
V-shaped trace show the same computation performed on permuta-
tions of the input data.

We attempt to fit the input data with a piece-wise con-
stant signal, by considering introducing a ”split” at various
points within the signal. To minimize the sum-of-squared
deviations, we compute the means of the samples on each
side of the split, and use those values for our estimate of the
underlying signal. We impose the constraint that a fixation
has a minimum duration of m samples. Figure 1 shows a
synthetic signal (in black) together with noise-corrupted
”measurement” (in red). The RMS error of a piece-wise
constant fit to the observed data is shown by the V-shaped
blue trace above the signal, with a clear minimum above
the RMS error for a number of permutations of the input
data In the examples shown here, we set m to a value of 9,
corresponding to a minimum fixation duration of 150 ms
for a sample rate of 60 Hz. Thus, the blue error curves
in figure 1 begin (and end) 150 ms after (and before) the
start (and end) of the data record.

This procedure tells us where to segment the signal in
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Figure 2. Distribution of the computed t statistic (in black), along
with the t distribution with 22 degrees of freedom.

order to obtain the best fit to the input data. But to de-
cide whether or not to accept this split, we must determine
whether the difference between the mean positions on ei-
ther side of the split is statistically significant. We examine
two methods for making this decision, a permutation test,
and a t-test.

The permutation test addresses the problem from the
standpoint that if all of the samples were in fact drawn
from a single underlying position, then the quality of fit of
the best split would be about the same if the samples are
randomly permuted. On the other hand, if the best-fitting
split arose from a true shift in the position, then permut-
ing the data would substantially degrade the quality of the
fit. We perform the process for some large number of per-
mutations, sort the resulting quality scores, and compare
the value from the real data with the sorted list. For ex-
ample, if we wish to accept splits that are significant at
the p=0.01 significance level (accepting a false alarm rate
of 0.01), we could 1000 permutations and accept the pro-
posed split if the RMS error is less than the 10th smallest
permutation error. Figure 1 shows the RMS error for a
number of permutations of the input data

The disadvantage of the permutation test method is
that the entire computation (including exhaustive search
for the best split point) must be performed anew for each
permutation. Thus, evaluating 1000 permutations, as in
the example above, increases the computational burden by
a factor of 1000. To avoid this, we instead can use a stan-
dard t-test. The t statistic is computed using the formula:

t =
µ1 −µ2

σp

√
1
n1
+ 1

n2

, (1)

where µ1 and µ2 are the means of the two intervals

(with lengths n1 and n2), and σp is the pooled variance:

σp =

√
(n1 −1)σ2

1 +(n2 −1)σ2
2

n1 +n2 −2
, (2)

with σ1 and σ2 representing the variances in the two
intervals.

Figure 3. The cumulative distribution corresponding the the ob-
served distribution in figure 2, together with the best fitting cumu-
lative exponentiated t distribution. See text for details.

When we compare the t statistic to the standard t-
table to test for significance, however, we obtain too may
false positives when testing with a constant signal. Figure
2 shows the standard t distribution (in red) along with an
empirically obtained distribution of the t statistic obtained
using our procedure. We would obtain the standard dis-
tribution if we tested once, at a single predetermined split
point; but in our procedure we perform the test at a split
point chosen from many, to optimize the fit.

Intuitively, we suspect that the observed distribution
may arise as the maximum of a number of t values, com-
puted for various split points. The distribution of the max-
imum of a number of independent samples is most easily
calculated from the cumulative distribution: if C(x) is the
probability that a sample t value is less than x, then the
probability that N independent samples are less than x is
(C(x))N . In the present case, however, the t values com-
puted at nearby split points are not independent, as they
share most of the constituent data points. We therefore
attempted to fit the observed cumulative distribution with
a cumulative t distribution raised to an arbitrary power.
The cumulative distribution corresponding to the empir-
ical distribution shown in figure 2 is shown in figure 3,
along with the best fitting exponential of a standard cu-
mulative t distribution. The fit is fairly good, but there
is no obvious relationship between the degrees of freedom
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and exponent used to obtain the fit, and the parameters
used in the simulation.

Figure 4. Observed t statistic distributions for a noisy signal with
no saccade (black), and one with a saccade with an amplitude of
half the noise standard deviation.

The preceding analyses have been performed using
one-dimensional signals, but eye-trackers generally report
two-dimensional gaze directions. The method is easily gen-
eralized to two dimensions: when evaluating a possible split
point, the horizontal and vertical dimensions are fit inde-
pendently, and the total squared error is obtained by sum-
ming the squared error for each of the dimensions.

Performing the statistical test for acceptance of the
split is slightly more complicated. One way to generalize
the method to two dimensions is simply to perform the test
described above independently to the horizontal and verti-
cal coordinates. This gives a slight penalty to oblique sac-
cades. A slightly more complicated approach which does
not suffer from this flaw is to project each two-dimensional
sample onto the line passing through the means on either
side of the split, and then using the position on this line
as a one-dimensional coordinate, and applying the one-
dimensional test as described above.

Results
We test the performance of the method by generating

test input signals containing small saccades with a range
of amplitudes. Figure 4 shows the distribution of the t
statistic for a signal containing a saccade with an ampli-
tude equal to half the noise standard deviation (in red),
along with the no-signal distribution (as shown previously
in figure 2). In practice, we will select a criterion t value,
and accept splits where the observed value exceeds the cri-
terion, and reject those where it does not. The significance
level that we choose for the test determines the false alarm
rate. By varying the criterion in small increments, we can
trace out the Receiver Operating Characteristic or ROC

Figure 5. Receiver Operating Characteristic (ROC) curve gener-
ated from the distributions shown in figure 4.

Figure 6. Hit rate versus saccade amplitude (expressed in units of
noise standard deviation), for two different false alarm rates.
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Figure 7. Distributions of saccade timing error magnitudes as a function of saccade amplitude, expressed in units of noise standard deviation.
For each saccade amplitude, the horizontal black bar indicates the mean timing error (in samples), while the red and green boxes show plus
and minus two standard deviations; the whiskers show the limits of the observed range.

curve, shown in figure 5 for the distributions shown in fig-
ure 2.

Detection performance
Figure 6 shows the hit rate as a function of saccade

amplitude, for two false alarm rates: 0.01 (black), and 0.05
(red). The figure illustrates that, for either criterion, most
saccades having an amplitude greater than the noise stan-
dard deviation are detected, while detection is falling off
rapidly at an amplitude of half of the noise standard devi-
ation.

Timing accuracy
In the previous section, we counted a ”hit” whenever a

saccade was detected in a signal that we created by adding
noise to a two-level signal. In figure 1, the saccade ampli-
tude is larger than the noise standard deviation, and the
saccade in the fit aligns perfectly with the ground truth sig-
nal. But as saccade amplitude is decreased, the estimated
saccade time (location of the optimal split point) will often
deviate from ground truth. Figure 7 shows the magnitudes
of these errors (in samples), plotted as a function of sac-
cade amplitude. The red and green bars represent plus and
minus two standard deviations from the mean (shown in
black), while the whiskers show the extreme values (which
in this case span the entire range of possibilities).

Amplitude accuracy
For the smaller saccades, accuracy is degraded not

only in the estimate of the time of occurrence but also for
the magnitude of the saccade. Figure 8 shows a histogram
of estimated amplitudes for saccades having a ground truth
amplitude of 0.1 relative to the noise standard deviation.

Figure 8. Histogram of estimated saccade amplitudes, for a true
amplitude of 0.1 times the noise standard deviation. The estimated
amplitude always overestimates the true amplitude.
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Figure 9. Histogram of estimated saccade amplitudes, for a true
amplitude of 0.8 times the noise standard deviation. The estimated
amplitude is close to the true amplitude.

Figure 10. Average estimated saccade amplitude as a function
of ground truth amplitude, for two false alarm rates. For ampli-
tudes below the noise standard deviation, the estimates are inflated
because only those trials where the noise reinforces the signal are
detected.

We can see from figure 6 that very few of these saccades
are detected; those that are detected are detected because
the added noise fortuitously is correlated with the signal,
and so aids in its detection. We also see in figure 8 that, for
a small fraction of these detected saccades, the estimated
amplitude is opposite in sign to the ground truth signal
- these should probably be considered false alarms rather
than hits!

Figure 9 shows the case for a larger saccade ampli-
tude. In this case, the average estimated amplitude is only
slightly larger than the ground truth value. Figure 10 sum-
marizes these results by plotting estimated saccade ampli-
tude versus ground truth amplitude for two false alarm
rates, 0.05 (shown in red) and 0.01 (shown in blue). For
both false alarm rates, as the ground truth amplitude drops
below 1 (in units of noise standard deviation), the esti-
mated amplitude drops more slowly, reflecting the fact
that as detection performance degrades, only those trials
in which the added noise reinforces the signal will be de-
tected.

Discussion
The preceding results have been obtained using simu-

lated sequences corresponding to 500 milliseconds, sampled
at 60 Hz. The implicit assumption is that large saccades
will occur with sufficient regularity that long records can be
segmented into short intervals free of large saccades, and
that the proposed method can then be applied to these
intervals. However, it is quite possible that records may
contain intervals of several seconds containing no large sac-
cades, for which the proposed method may be called upon
to find multiple small saccades. An early implementation
of the procedure [3] applied the procedure to long records,
and then recursively subdivided intervals resulting from
each split, until all of the intervals were too short for fur-
ther splitting. This approach has several disadvantages.
First, the computational burden is O(NlogN), where N is
the length of the sequence. (The basic method is O(N)
for a single pass, with O(logN) recursive passes.) A more
serious problem is that there can occur signals containing
3 or more positions (separated by arbitrarily large inter-
vals) for which there is no single binary split that produces
a statistically significant difference between the two inter-
vals. When the position shifts are large, a velocity-based
saccade-finder can segment the signal into smaller inter-
vals, but these types of signal can render the recursive ap-
proach ineffective when the saccades are small. Therefore,
it is suggested that longer records that are free of large
saccades be analyzed with a sliding window of roughly 500
milliseconds.

Our computation of the noise distribution (figure 4)
assumed a noise model of Gaussian-distributed position
noise. This is probably reasonable for video-based eye
trackers when the main source of noise arises from the im-
ages (e.g., sensor and quantization noise), but characteriza-
tion of the noise properties of a system should be done be-
fore applying the method. A more difficult problem arises
from measurement errors that are not properly ”noise,” but
nevertheless increase the variability of measurements. One

IS&T International Symposium on Electronic Imaging 2018
Human Vision and Electronic Imaging 2018 528-5



example comes from systems that measure both the pupil
position and the location of one or more ”glints” (reflec-
tions from the cornea of one or more illuminators). The
glint tracking subsystem may falsely lock onto a scleral re-
flection, making it seem as if a saccade has occurred when
in fact there was none. This can be especially devastating
if it occurs during the calibration phase. Similarly, systems
that compute a simple pupil centroid (rather than fitting
an ellipse to the pupil margin) will suffer from systematic
errors when the pupil is partially occluded by an eyelid. In
all cases, these effects will increase the apparent variability
of the measurements, while having characteristics that are
distinct from white noise.

Positional ”noise” observed during a fixation does not
come solely from measurement noise; small instabilities of
the eye itself, known as fixational eye movements, are in-
escapable, and can contribute to the apparent noise of a
system during calibration. Fortunately, these are small,
usually less than 10 minutes of arc during a typical fixation
[4, 5, 6], and so can be safely neglected in cases where mea-
surement noise exceeds 0.5 degree. In future work, we hope
to incorporate a model of fixational eye movements into the
simulations presented here to investigate their effect on the
performance of the method in low-noise situations. Unlike
the positional noise used in these simulations, which was
white in position, fixational drift is thought to be white
in velocity, leading to a 1/f spectrum when expressed as
position [7, 8].

Finally, our model of the underlying signal as a piece-
wise constant function has a number of limitations. First,
it neglects the fact that real saccades take a finite time to
execute, with larger saccades taking longer in accordance
with the ”main sequence” [9, 10]. This becomes impor-
tant for systems with a high sampling rate, where there
may be a number of samples taken during a saccade while
the eye is in flight. If these samples are included when
considering a split near the saccade center, they will bias
the estimated position and degrade the quality of the fit.
One approach might be to discard samples near the split
point when evaluating a prospective split. Alternatively,
one might incorporate a model of saccade dynamics [11, 12]
when constructing model signals.

Another way in which our piece-wise constant signal
model fails to capture real behavior is that there is no
provision for smooth pursuit. Smooth motions are also en-
countered in records from head-mounted recording systems
during head movement, due to the vestibulo-ocular reflex
(VOR). This might be addressed by generalizing the signal
model from piece-wise constant to piece-wise linear.

Summary
Large saccades are easily detected using a velocity

threshold, but the detection of small saccades can be prob-
lematic. We have presented a novel method for the iden-
tification of small saccades in noisy eye movement sig-
nals. Our analysis reveals fundamental limits in the de-
tection of small saccades having amplitudes smaller than
the noise standard deviation. The smallest saccades are
only detected when combined with favorably correlated

noise, causing their amplitude to be over-estimated. The
method is potentially useful in situations involving rela-
tively high noise levels, such as remote camera systems
installed in operational environments, with closely-spaced
areas-of-interest which must be distinguished.
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