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Saccadic brightness decisions do not use a difference model
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Eye movements are the most frequent (~3 per second),
shortest-latency (~150-250 ms), and biomechanically
simplest (1 joint, no inertial complexities) voluntary
motor behavior in primates, providing a model
sensorimotor decision-making system. Current
computational “difference” models of choice behavior
utilize a single decision variable encoding the difference
between two alternate signals, often implemented as a
log-likelihood ratio. Alternatively, the oculomotor
literature describes a “race” mechanism, in which two
separate decision variables encoding the two alternate
signals race against one another independently. These
two models make two qualitatively distinct predictions,
which can be tested empirically with a two-alternative
forced-choice task. Unlike the race model, a decision
variable based upon a differencing operation predicts
strong mirror image correlations between response time
(RT) and the signal strengths of the selected and
unselected stimuli (because differencing creates equal
and opposite correlations). In a saccadic brightness
discrimination task, we observed positive correlations
between response rate (1/RT) and the strength of both
the selected and unselected stimulus, a simple
qualitative prediction of race models that applies to any
2AFC task but which is fundamentally at odds with the
most basic prediction of any difference model. Our data
are, however, qualitatively consistent with a mechanism
in which two competing motor plans co-exist and their
two corresponding neural decision variables race to a
threshold to drive the saccadic decision.

Current models for perceptual and motor choices
assume that noisy neural signals accumulate toward a
response threshold, allowing one to account for the
proportions of behavioral choices and their respective
response time distributions. In the taxonomy of these
models given by Smith and Ratcliff (2004), the
distinction between the two basic classes of models
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concerns the computation driving decision signals. In a
difference model (M. S. Stone, 1960; Figure 1A), a
single decision variable that quantifies the difference
between the magnitudes of the two stimuli is integrated
over time until either a positive or a negative threshold
is crossed (Link & Heath, 1975; Ratcliff & Rouder,
1998), a neural implementation of a log-likelihood ratio
(Gold & Shadlen, 2001). In a race model (Ratcliff,
Hasegawa, Hasegawa, Smith, & Segraves, 2007;
Robinson, 1973; Usher & McClelland, 2001) (Figure
1B), independent competing decision variables (M. S.
Stone, 1960), each representing support for one
alternative (Carpenter & Williams, 1995), race each
other to threshold. Both models have been used to fit
response time distributions and choice proportions for
a variety of single-stimulus tasks (Churchland, Kiani, &
Shadlen, 2008; Niwa & Ditterich, 2008; Palmer, Huk, &
Shadlen, 2005; Ratcliff et al., 2007; Ratcliff & Rouder,
1998; Usher & McClelland, 2001), and both classes of
models can account for a number of well-known
benchmark phenomena (Brown & Heathcote, 2005,
2008) in the response-time literature. The approach in
this paper is to separate the effects of the model
decision variables (Figure 1A, B) from those emanating
from model noise sources (Figure 1C).

Consider a generic magnitude discrimination be-
tween two sensory signals (a and b). In the noise-free
case, the difference model and the race model yield
canonically equivalent decision rules (i.e., a—b >0 =a
> b) and produce identical sets of behavioral choices.
However, these two models yield qualitatively different
patterns of response times. For example, by employing
the common assumption made by both models that the
mean rate of rise is proportional to signal strength
(Grice, 1968; LaBerge, 1962; Palmer et al., 2005;
Piéron, 1927), the response time predicted by the
difference model will be 1/abs(a—b), whereas the
response time predicted by the race model will be 1/a if
a > band 1/b if b > a. Starting with this basic
difference between model predictions in the noise-free
case, we examine the impact of various model noise
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Figure 1. Model mechanisms. In A, a single neural decision variable encodes the difference between two input signals (a and b),
integrated over time to reach a positive or negative threshold, triggering response A or B. In B, neural decision variables for two
signals race to threshold against each other; the first signal to cross the threshold wins the race, triggering the response. In the noise-
free case, these two models yield equivalent decision rules (i.e., a—b > 0 = a > b) and predict identical choice performance, but
qualitatively different patterns in response time. These generic models employ the common assumption that signal strength is
proportional to rate of rise. C illustrates three well-known noise sources used to account for the proportions of behavioral choices
(e.g., correct and incorrect responses) and their respective response-time distributions.

sources, and develop general qualitative predictions for
both models which can be tested against response-time
data from any 2AFC task.

In the present study, we use a very simple task to test
predictions made by these two models regarding the
relative strength and sign of the respective correlations
between response time (or its reciprocal, response rate)
and the signal strength of the selected and unselected
stimulus. For the race model, both stimuli do not
contribute equally to the timing of the response; the
strength of the selected stimulus is expected to be more
strongly correlated with response time than is the
strength of the unselected stimulus, and the signs for
both correlations are expected to match. For the
difference model, because both stimuli contribute
equally to the differencing operation, the strength of
these two correlations (e.g., Pearson’s r) will always
have the same magnitude (Richards & Zhu, 1994), but
opposite sign. In our task, we report significant positive
correlations between response rate and both the
selected and unselected stimulus strength. No difference
model can account for that observed pattern in

saccadic response time and choice behavior. We
conclude that humans do not drive their saccadic
targeting decision in our 2AFC task using a differenc-
ing computation. Preliminary reports of our finding
have been reported previously (Liston & Stone, 2009).

Paradigm

To test the two models, we used a paradigm whereby
observers made saccadic eye movements in a standard
2AFC brightness discrimination task that we have used
before to examine the relationship between visual
decision making for saccades and perception (Liston &
Stone, 2008). On each trial, subjects fixated a central
cross for a randomized duration (Luce, 1986; Palmer et
al., 2005) drawn from a truncated exponential distri-
bution (mean: 700 ms, minimum: 200 ms, maximum:
5000 ms) to defeat possible temporal expectation of
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stimulus onset. Two bright disks appeared on a
background of pixel noise, 6° to the left and right of
fixation, and subjects were instructed to make a saccade
to the brighter of the two disks. As two disks were
presented on each trial, this stimulus allowed the signal
strength and noise of each alternative to be manipu-
lated independently. We ran seven human observers (all
seven naive, 500 trials per session, ten sessions per
subject) on a task with signal strength varying over a
large brightness range (i.e., both stimulus alternatives
were drawn independently from a uniform distribution
from 0 to 10 d’ units with external noise SD of 1 d’
unit). All observers provided informed consent under
protocols approved by the NASA Ames Research
Center Human Research Institutional Review Board,
and our methods adhered to the Declaration of
Helsinki.

Stochastic signal strength

We used stochastic, noisy stimuli in both tasks in this
study. To create each stimulus image, we started with a
full-field background of Gaussian pixel noise (gq = 8.2
cd/m?) on a uniform gray background (37.6 cd/m?).
Two Gaussian-blurred (¢ = 1 pixel) disks of diameter
0.6° (15 pixels) were added to the background, 6° to the
right and left of the central fixation cross, each framed
by a black bounding box. Both disks were scaled
versions of one original “signal template,” which was
normalized to have unit energy with respect to the
external background noise (i.e., detection d’ for the
ideal observer was 1.0). This d’ value is the square root
of the energy in each stimulus disk (the magnitude of
the inner product of the signal template and the
stimulus) divided by the standard deviation of the
background pixel noise (Burgess, Wagner, Jennings, &
Barlow, 1981; Eckstein, Beutter, & Stone, 2001). We
used fixed background noise and a fixed uniform
background level, and set the signal strength for each of
the two disks independently. For each stochastic
stimulus image created, the stimulus strength for each
stimulus disk was computed by calculating its detect-
ability by the ideal observer in d’ units (Green & Swets,
1966).

Reward schedule

Observers from outside the laboratory were paid
hourly for their participation ($12/h), and all subjects
were paid an additional monetary incentive (maximum
of $15) corresponding to rewards accumulated during
the course of a session. We used a monetary reward
schedule that incorporated both response time (i.c., the
size of the reward decreased as latency increased) and
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accuracy (i.e., only correct trials were rewarded) on
individual trials (Liston & Krauzlis, 2005; Liston &
Stone, 2008). After each correct trial, subjects were
given an auditory tone corresponding to the magnitude
of reward on that trial (100 Hz to 1000 Hz). After each
experimental session, the incentives were summed and
paid to subjects. This schedule encouraged subjects to
establish a consistent balance point between fast and
accurate responses (Green & Swets, 1966), and subjects
were instructed to maximize their take-home pay.

Simulations

The purpose of these simulations was to disentangle
the properties of the model decision variable (i.e., a
single difference variable or a race between two
independent variables) from the noise sources that
perturb those variables by simulating the effect of three
commonly-used noise sources in psychophysical and
response-time models of decision-making for both
models. First, Brownian noise describes normally-
distributed variability in the decision signal as a
function of time within a trial (Link & Heath, 1975;
Palmer et al., 2005; Ratcliff & Rouder, 1998),
consistent with a Weiner diffusion process (i.e., var =
Obrownian- - 1). Second, Carpenter(ian) noise describes
normally-distributed across-trial variability (Carpenter,
1981) in the rate of rise of the decision variable
(Carpenter, 2002; Carpenter & Williams, 1995; Ratcliff
& Rouder, 1998), giving rise to the “Recinormal” shape
of response time distributions (i.e., the reciprocal of
latency follows a normal distribution). Last, baseline-
to-threshold noise describes across-trial variability in
the distance between the starting position and the
response threshold, distributed uniformly in these
simulations, equivalent to either starting-point (Lam-
ing, 1968) or threshold (Grice, 1968; Hallett, 1969;
Ratcliff & Rouder, 1998; Wickelgren, 1968) variability.

We ran four separate discrete (temporal resolution of
1 ms) Monte Carlo simulations of the models shown in
Figure 1A, B, using Matlab (MathWorks, Natick,
MA). First, to generate smooth choice-triggered
response-rate color plots in Figure 2A, B, we simulated
1 million trials of our task (completely independent,
uniformly-distributed brightness values) with a fixed
level of Brownian noise (1.5 s'). Second, to illustrate
the basic predictions for the choice-triggered correla-
tions, we simulated 1 million trials of our task under
three different noise conditions, varying the noise level
in 200 steps: Brownian noise, 0 to 4 s °; Carpenter
noise, 0 to 30 s~ '; baseline-to-threshold noise, 0 to 1.99.
Third, to show that the predictions of the fully
elaborated difference model (Ratcliff & Rouder, 1998;
Smith & Ratcliff, 2004) remain consistent with the
basic prediction of all difference models as far as the
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Figure 2. Model simulations. Simulated choice-triggered re-
sponse time data in A, B are shown as color plots, faster
responses being lighter (orange-yellow-white) and slower
responses being darker (red-brown-black). The difference model
(A) predicts that the selected and unselected stimulus
contribute equally to response time, giving rise to iso-RT lines
along the diagonal and the symmetry about the major diagonal
corresponds to the predicted equality between correct and
error response times with Brownian noise (Laming, 1968; M. S.
Stone, 1960). Limited sampling of incorrect responses (below
the major diagonal) gives rise to more noise (and an empty
region) in the bottom right-hand corner. A race between signals
(B) predicts that the selected stimulus will have a stronger
relationship than the unselected, and that, due to competition
between racing signals (Raab, 1962), RTs tend to become faster
(not slower) as the strength of the unselected stimulus
increases. The strength of the relationship between response
rate and the selected and unselected stimuli differs because the
motor response is triggered by the winning decision signal (plus
whatever noise in that signal); the losing decision signal (plus
whatever noise in that signal) influences response time only
indirectly by driving movements toward faster responses in
close races.

oppositely-signed RT correlations with the selected and
unselected stimulus strength, we ran discrete simula-
tions that sampled the space of each of the seven
parameters in four steps (i.e., 4’ simulations): starting
position, —0.9 to 0.9, threshold, 0.001 to 1, fixed
nondecision delay 0 to 500 ms, and nondecision delay
variability, 0 to 100 ms. The Results section describes
these simulations in this order.

Behavioral performance measurements

On each trial we measured the direction of the first
saccadic eye movement with amplitude greater than
0.5°, and defined the saccadic decision as the direction
of the horizontal eye movement. We discarded trials
with anticipatory (latency < 100 ms, 1.4% of trials) or
errant saccades (saccade direction > 45° from hori-
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zontal, or endpoint >4° off target, 3.8% of trials). We
computed response rate as the simple reciprocal of
saccadic latency. A binary “oculometric” saccadic
choice was deemed “correct” if its horizontal compo-
nent (leftward or rightward direction) was toward the
brighter disk (Eckstein et al., 2001). On average across
subjects, the proportion of correct saccades for the
2AFC saccadic brightness task was 0.72 (range: 0.65—
0.77). The median saccade latency averaged across
subjects was 224 ms (range: 202-240), consistent with
normal visually-guided human saccadic response be-
havior (Leigh & Zee, 2006; Robinson, 1965). Both
correct and incorrect trials were included in all
analyses.

To examine the qualitative predictions of the two
models, we first ran Monte Carlo simulations of the
two generic decision models (Figure 1A, B) perturbed
by three well-known sources of internal noise (Figure
1C). The general qualitative prediction for the differ-
ence and race models is illustrated in the choice-
triggered response-rate color plots (Figure 2A, B). The
difference model (Figure 2A) always generates response
times that vary systematically along the minor diagonal
with faster responses associated with larger signal
strength in the selected stimulus and lower signal
strength in the unselected stimulus. Due to the
differencing operation, the model predicts no change in
response time along lines parallel to the major diagonal
(i.e., a fixed signal-strength difference at varying
pedestal levels), and the strength of the correlation
between response rate and the selected and unselected
stimuli will always be equal in magnitude but opposite
in sign. The race model (Figure 2B) generates the same
strong relationship between response time and the
strength of the selected stimulus, but a much smaller
effect of the strength of the unselected stimulus
(typically a small increase for higher unselected
strength). The observation that simultaneous quasi-
independent stimuli contribute to faster responses
(Todd, 1912) has been studied in the context of the race
model for some time (Diederich, 1992; Miller, 1982;
Raab, 1962).

Systematic simulations illustrate the basic qualitative
differences between the two model mechanisms. The
difference model predicts that the correlation between
response rate and the strength of the selected stimulus
(Figure 3A) will be of equal magnitude (but opposite
sign) compared to the correlation with the unselected
stimulus (Figure 3B), and that these points fall along
the line of slope equals —1 when plotted against each
other (Figure 3C). The race model predicts that the
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Figure 3. Correlation strength predictions. Each filled circle in the top four panels plots response rate (reciprocal latency) for one
stimulated trial as a function of signal strength of the selected (A, D) or the unselected (B, E) stimulus, using the simulation data
shown in Figure 2. The difference model predicts that the selected and unselected stimulus contribute equally to response time,
giving rise to correlation strengths that are equal in magnitude and opposite in sign (A, B). A race between signals predicts that the
selected stimulus (D) will have a stronger relationship than the unselected stimulus (E), and that the competition between racing
signals drives RTs toward faster responses as the strength of the unselected stimulus increases (E). Panels C and F plot simulated
Pearson’s r values between response rate and the selected (ordinate) and unselected (abscissa) stimulus for the three common noise
sources of internal noise (Figure 1C). Each filled circle plots the average correlation strength with one source of internal noise (black,
Brownian noise; green, Carpenter noise; blue, baseline-to-threshold noise), at one noise level. Solid lines in F show polynomial
regression through the origin for simulated data within the range of our observations (r < 0.3); starting-point variability between the
origin and the first simulation point was assumed to be linear. The difference model (C) always predicts that the correlation with
signal strength will have equal magnitude and opposite sign for the selected and unselected stimulus; the predictions of all three
noise sources fall along the line of slope equals —1. The race model (F) predicts a weak positive correlation between response rate
and the unselected stimulus, with the predictions for Brownian and Carpenter noise following overlapping trajectories. Clearly the
noise sources in the race model (blue vs. green in F) generate a minor second-order effect compared to the major qualitative
difference between the difference and race models.
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Figure 4. Observed correlation strength. Each black circle plots
Pearson’s r for the correlation with the selected stimulus against
the corresponding correlation with the unselected stimulus, for
one of the seven observers (two subjects’ data very nearly
overlap at the rightmost point). Error bars represent the central
95% of the distribution of bootstrapped values. The solid green
(Brownian and Carpenter noise) and blue (baseline-to-threshold
noise) lines delimit the range of correlation strength predictions
for the race model plotted in Figure 3, and the solid red line
shows the difference model prediction (with Brownian,
Carpenter, and baseline-to-threshold noise superimposing). The
blue circle represents the average across observers, and the
error bars represent the across-observer SEM.

strength of the selected stimulus is expected to be more
strongly correlated with response rate (Figure 3D) than
is the strength of the unselected stimulus (Figure 3E),
and the signs for both correlations are expected to
match (Figure 3F). We also ran discrete simulations of
the full diffusion model (Ratcliff & Rouder, 1998) that
sampled the space of the seven parameters, and found
results which conformed to the qualitative predictions
shown in Figure 3C.

To test these predictions, we compared the correla-
tions between response rate and the strength of the
selected and unselected stimuli (Figure 4). We observed
a weak positive correlation between response rate and
the unselected stimulus (mean = SD: 0.04 = 0.03, ¢ test
across observers, p < 0.05) averaged across observers,
inconsistent with the difference model, but consistent
with a race model. Furthermore, the positive r-value for
the correlation with the selected stimulus (mean = SD:
0.13 = 0.08, ¢ test across observers, p < 0.01) had a
significantly different magnitude than that with the
unselected stimulus (paired ¢ test across observers, p <
0.05). To make within-subject comparisons, we boot-
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strapped a distribution of 1000 r-values for each subject
by resampling our data with replacement (Efron &
Tibshirani, 1993). The correlations were significantly
different (p < 0.05) than that predicted by the
difference model in all cases (i.e., significantly off the
red simulated difference-model performance line with
slope of —1).

The average correlation with the selected and
unselected signal strength is, however, well predicted by
a purely independent race model perturbed by noise
(see filled blue circle in Figure 4). However, a within-
subject analysis shows that the simplest race model
cannot account for two of the seven observers (i.e.,
outside of the region bounded by the simulated noise
sources in Figure 3F). Clearly, some of the intersubject
variance still needs to be accounted for, perhaps by
weak inhibitory, facilitatory, or auto-excitatory inter-
actions within or between the decision variables
(Boucher, Palmeri, Logan, & Schall, 2007; Usher &
McClelland, 2001; Wang, 2002).

By comparing the empirical trends in response times
to model predictions, our method provides a simple test
to distinguish between difference (M. S. Stone, 1960)
and race (Robinson, 1973) models of 2AFC sensori-
motor decisions. We observed a pattern of correlations
between response rate and stimulus strength (Figure 4)
that is qualitatively inconsistent with difference models.
We conclude that a difference model cannot explain
human saccadic behavior in our 2AFC brightness
discrimination task.

Our results are, however, generally consistent with a
race model although a purely independent race model
cannot fully account for our data. First, two of our
seven observers showed a significant deviation from our
independent race model predictions. Second and more
importantly, across all observers, we did not observe a
positive relationship between the selected and unse-
lected r-values given an independent race model with a
single source of internal noise (solid lines in Figure 4).
Thus, we propose that any race-model explanation of
human performance in our task will require some
interaction between the two racing decision variables
(mutual facilitation or inhibition) and/or additional
sources of variability (e.g., baseline-to-threshold noise),
which could act to obscure the expected positive
relationship between r-values and more fully explain
the range of observed intersubject variability. Lastly,
our data do not rule out the possibility that a neural
mechanism altogether different from a race model
underlies our observations.
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Accounting for choice proportions

Both the race and the difference model make testable
predictions about the proportion of correct and
incorrect responses. In the noise-free case, both models
predict an identical set of behavioral choices, although
this behavior is not particularly realistic because all
choices are correct. With a fixed level of Carpenter
noise, and no other noise, both models make an
identical set of behavioral choices (taking into account
that differencing will alter the noise level by the square
root of two). With a fixed level of Brownian noise, and
no other noise, this remains true (also taking into
account that the differencing operation will alter the
timepoint-by-timepoint noise level by the square root
of two). Those noise situations are straightforward, and
can give rise to plausible distributions of choice
proportions, but do not distinguish between the two
model mechanisms. For the difference model, starting-
point variability alone will still yield perfect perfor-
mance. For the race model, the amount of starting
point variability would have to be set to an unreason-
ably high level to cause incorrect responses. To produce
plausible distributions of choice responses, another
noise source (either Brownian or Carpenter) must be
added. Thus, the two models could theoretically be
distinguished using the proportions of correct and
incorrect choices, although quantitative percent-correct
predictions depend heavily on assumed interactions
between model noise sources whereas our qualitative
response rate approach is robust to noise assumptions
(Figure 3).

Caveat regarding previous psychophysical
studies

One potential reason that the correlation prediction
resolved in this paper has not yet been tested is that it
is critical to use a true 2AFC paradigm to examine
models of 2AFC decisions. The structure of the race
and difference models highlight the important dis-
tinction between single-stimulus “yes-no” and 2AFC
psychophysical tasks (Green & Swets, 1966; Macmil-
lan & Creelman, 1991). Both tasks require the subject
to make one of two possible responses, thus seemingly
“two-alternative forced-choice” tasks, although the
word “alternative” refers to the two independent
stimuli/signals rather than the two possible response
choices. The critical difference between the task types
is that in a “yes-no” paradigm, a single stimulus drawn
from one of two classes is presented on each trial
whereas in the two-alternative forced-choice para-
digm, two statistically-independent stimulus alterna-
tives are presented on every trial. The single stimulus
in a “yes-no” task itself directly encodes the difference
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between the two alternatives (e.g., in the commonly
used random-dot motion paradigm, the net motion
energy in the single stimulus is the simple difference
between the superimposed opponent motion alterna-
tives). Thus, any observed behavioral correlation with
a difference variable may not be indicative of any
actual neural differencing operation, an important
point which has been noted recently (Churchland et
al., 2011).

Furthermore, we must highlight the fact that
simply having two stimuli does not guarantee a true
“2AFC” decision. The degree of statistical depen-
dence between the two stimuli could transform a
“2AFC” task into a “yes-no” task. For example, with
a stimulus like ours, if a “target” stimulus of strength
d’ = 10 were placed in one of the two locations with
equal probability and a “distractor” stimulus of d' =1
were always placed opposite, there would be a
complete dependence between the signal alternatives,
and the observer need only monitor one location in
order to perform the task (thus, effectively a “yes-no”
task). This fact prompted our use of two statistically-
independent choice stimuli to force our observers to
perform a true 2AFC task.

Indeed, if one revisits the noise-free case described
in the Introduction (Figure 1) under the conditions of
a YES-NO task (e.g., b=-a), it becomes clear that the
choices of both model mechanisms always concur (i.e.,
a > b = a-b > 0), and that the response time
predictions are linearly related (i.e., 1/abs[a — b] =1/
[2a] for the difference model, and 1/a for the race
model). In this context, the YES-NO task is a
degenerate case of the 2AFC task because the
“alternatives” are perfectly anticorrelated within a
single signal and bona fide differencing is not possible.
Thus, this stimulus offers no power to distinguish
between the two models and fits of the difference
model to YES-NO behavioral data (Palmer et al.,
2005; Ratcliff et al., 2007; Ratcliff & Rouder, 1998;
Usher & McClelland, 2001) are not determinative of
the underlying decision mechanism.

Motor versus perceptual choices

Perceptual judgments involve the transformation of
a sensory stimulus into a categorical response (Gold &
Shadlen, 2001), usually communicated via a motor
action (e.g., a button-press, eye-movement, verbal
response). This motor action serves as a simple
surrogate for the categorical interpretation of the
stimulus, and has been modeled as a fixed downstream
output process with no impact on the decision signal
and no additional response-time variability (Liston &
Krauzlis, 2005; M. S. Stone, 1960). In the present task,
the brightness discrimination required a short latency
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(~250 ms) saccadic motor response, a semireflexive
ballistic action whose metrics are naturally linked to the
spatial properties of the stimulus and whose onset does
not necessarily wait for the completion of any high-
level perceptual or conscious decision. Thus, while
there is much evidence for shared visual processing for
perception and oculomotor action (L. S. Stone,
Beutter, Eckstein, & Liston, 2009) and our previous
report has indeed revealed linked effects of brightness
on both perception and saccades (Liston & Stone,
2008), our current oculomotor study is silent on this
issue although preliminary reports have revealed
similar effects in perceptual brightness decisions
(Liston & Stone, 2011, 2012).

In conclusion, our data show that 2AFC decision
models based on the differencing of stimulus decision
variables cannot account for the observed pattern of
human saccadic response times in our correlation
analysis. In the present study, our 2AFC stimuli were
drawn independently from two uniform distributions
(0-10 d’ with external noise SD of 1 d’ unit and mean d’
difference of 3.5); in a previous study (Liston & Stone,
2008), we used two Gaussian distributions with a
smaller average signal strength difference (target signal
strength of 5.5, distractor strength of 4.2 d’, both with
external noise SD of 1.0 d’ unit and mean d’ difference
of 1.3) and our correlation analysis showed the same
outcome, with eight out of eight subject-cases being
significantly different than the difference model pre-
diction (Liston & Stone, 2009). Our data also show that
a race model with some interaction term (Boucher et
al., 2007; McPeek, 2006; Usher & McClelland, 2001;
Wang, 2002) between the two alternatives cannot be
ruled out. We would further argue for one theoretical
advantage of the race model over the difference model
in biological decision-making systems. Although the
difference model can theoretically be extrapolated to
N-alternatives (Gold & Shadlen, 2001; Green & Swets,
1966; Laming, 1968), in practice, it would be compu-
tationally awkward to compute all the pairwise ratios
and then require a complex decision rule to sort them
all out. A simple race model however naturally
extrapolates to N independent alternatives running in
parallel towards a finish line (Edwards, 1972). Perhaps
more importantly, retaining and monitoring the entire
set of N decision variables (McPeek, Han, & Keller,
2003; Robinson, 1973) appears evolutionarily advan-
tageous as it allows possible alternative motor plans to
drive behavior quickly and decisively, maintains the
flexibility to incorporate costs, rewards, and prior
probabilities into each decision variable independently
and in real time, and permits a just-in-time “change of
mind” with no added cost.

Keywords: response time, decision model, choice
behavior
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