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Predicting visual acuity from wavefront aberrations
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It is now possible to routinely measure the aberrations of the human eye, but there is as yet no established metric that
relates aberrations to visual acuity. A number of metrics have been proposed and evaluated, and some perform well on
particular sets of evaluation data. But these metrics are not based on a plausible model of the letter acuity task and may not
generalize to other sets of aberrations, other data sets, or to other acuity tasks. Here we provide a model of the acuity task
that incorporates optical and neural filtering, neural noise, and an ideal decision rule. The model provides an excellent
account of one large set of evaluation data. Several suboptimal rules perform almost as well. A simple metric derived from

this model also provides a good account of the data set.
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Introduction

It is now possible to routinely measure the monochro-
matic aberrations of the human eye (Cheng, Barnett, et al.,
2004; Cheng, Himebaugh, Kollbaum, Thibos, & Bradley,
2004). This means that we can precisely specify the retinal
image produced by an arbitrary target, and yet, remark-
ably, we cannot predict the visual acuity that will result
from a given set of aberrations. In this paper, we present a
model that closes this gap and that connects wavefront
aberrations to visual acuity.

One reason to seek a prediction of acuity from
aberrations is the possibility of automated objective
measurement of visual acuity and of automated prescrip-
tion of sphero-cylindrical corrections. However, it has
been shown that correcting the spherical and cylindrical
components of the aberrations (equivalent to minimizing
the RMS error of the wavefront) does not provide best
acuity. Thus, these automated procedures must await a
more sophisticated metric that can predict acuity from an
arbitrary set of aberrations.

In this paper, we evaluate the performance of several
simple metrics that predict letter acuity from wavefront
aberrations. To evaluate the metrics, we make use of a set
of previously published data (Cheng, Bradley, & Thibos,
2004).

One reason for our interest in this problem is our recent
proposal for a standard model for foveal contrast detection
(Watson & Ahumada, 2005). We were interested to know
whether that model, suitably extended with aberrated
optics, could provide the basis for predicting acuity from
wavefront aberrations.

Our interest in this subject also derives from our general
interest in human pattern identification. As relatively
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simple, small, highly learned patterns, letters have long
served as canonical subject for pattern identification
studies and models (Bouma, 1971; Gervais, Lewis,
Harvey, & Roberts, 1984; Gibson, Osser, Schiff, & Smith,
1963; Parish & Sperling, 1991; Pelli, Palomares, &
Majaj, 2004; Solomon & Pelli, 1994; Watson & Fitzhugh,
1989). We have previously developed simple image
classification models, limited by early constraints such as
contrast sensitivity, that we hoped to test in the context of
known optical limitations.

Previous studies

Guirao and Williams (2003) explored seven metrics to
predict image quality and thus refraction from wavefront
aberrations. Two of their metrics were so-called “pupil
plane” metrics, which consisted of calculations on the
wavefront over the pupil. The remaining five were “image
plane” metrics consisting of calculations in the retinal
image plane. For six eyes, they collected aberration data
and subjective refraction in the same apparatus. For each
metric and each eye, they found the combination of sphere
and cylinder that would maximize the metric. They found
that their image plane metrics provided good predictions
(mean error = 0.1 D), while the pupil plane metrics
yielded poorer predictions, whose quality declined as
higher order aberrations increased. The same general
pattern (with somewhat larger average error) was found
in a second population of 146 observers, from whom
separate aberration and refraction data were collected in
different settings.

Cheng, Bradley, et al. (2004) collected acuity measure-
ments from observers viewing computationally aberrated
Sloan letters and compared the results to the predictions of
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31 metrics. Their data clearly confirmed that the presence
of fourth order aberrations altered the effect of defocus;
notably, the amount of defocus required for best acuity
depended upon the amount of higher order aberration.
They also determined that several of their metrics
correlated well with measured letter acuity.

Thibos, Hong, Bradley, and Applegate (2004) evaluated
the ability of the same 31 metrics, plus two additional
metrics, to predict best refraction. They began with
aberration maps from 200 subjectively well-corrected
eyes (Thibos, Hong, Bradley, & Cheng, 2002). For each
metric and each map, they simulated subjective refraction
by computationally varying spherical and cylindrical
corrections so as to maximize predicted acuity. They then
compared the resulting simulated correction with the
actual correction, which was always zero because the
eyes were well corrected. They found that five metrics
were reasonably accurate (mean corrections near zero)
and precise (low variance among corrections).

Applegate, Marsack, Ramos, and Sarver (2003) mea-
sured letter acuity for three observers in the presence of 34
distinct mixtures of two Zernike modes whose total RMS
error was fixed at 0.25 um. Despite a constant wavefront
RMS error, performance varied by up to 0.2 LogMAR
units. LogMAR is defined here as

h
LogMAR = log,, <§> , (1)

where / is Sloan letter height in minutes of arc.

Marsack, Thibos, and Applegate (2004) compared these
experimental results to computed values of the 31 metrics
discussed above. Their best metric (VSOTF) accounted
for 81% of the variance; altogether, six of the metrics
accounted for 70% or more.

Metrics and models

In this paper, we adopt a distinction introduced
previously between metrics and models (Watson &
Ahumada, 2005). The former consist of formulas or
computations that merely describe the quantitative rela-
tionship, while the latter include mechanistic statements
that attempt to explain why the relationship exists. Models
serve a scientific purpose, while metrics may have a
practical advantage due to their greater simplicity.

In assessing metrics and models of the relation between
aberrations and acuity, we distinguish four types. At one
extreme are metrics that incorporate only optics. An
example is the RMS error of the wavefront. Metrics that
add some description of post-optical (neural) processing
form the next group. All of the models considered above
are of these first two types (Thibos et al., 2004). More
complete are models or metrics that include the specific
acuity targets, such as Sloan letters, in the calculation.
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And still more complete are models that also simulate the
specific task undertaken in the acuity measurement:
identification of individual letters. Here we develop a
model and a metric, both of which fall into this last
category.

The model and the metric we propose are both designed
to predict letter acuity from wavefront aberrations. The
first model is a Monte Carlo simulation of a decision
process. This model has several variants, one of which is
an ideal observer limited by optics, neural filtering, and
neural noise. The second metric is a deterministic
calculation involving optics, letters, and a hypothetical
neural CSF. We will consider in turn the details and
results of our model and our metric.

Specifying aberrations

The aberrations of the eye are conveniently described
using the now-standard normalized Zernike expansion
[American National Standards Institute (ANSI), 2004;
Thibos, Applegate, Schwiegerling, & Webb, 2002]. This
consists of a set of polynomial basis functions (also called
modes) defined over the pupil; a particular aberration state
is defined by the set of coefficients, and the wavefront is
given by a linear combination of the bases weighted by
the coefficients. Each basis is defined by two indexes,
which are the order and frequency (also called the radial
order and meridional frequency). The conventional nota-
tion for a basis of order n and frequency f is Z,. We will
also sometimes use the list notation {n, f} or when
associated with a coefficient {n, f, c}. Where several
modes are present, we represent them as a list of lists, Z =
{{n1, f1, c1}, {na2, f5, c2},...}. Defocus and astigmatism are
determined by second order modes {2, O} and {2, £2},
respectively. The reader is referred to Thibos, Hong, et al.
(2002) for a more detailed discussion of the Zernike
polynomials.

One measure of the magnitude of a complete set of
aberrations is the RMS error of the wavefront, which is
equal to the square root of the sum of the squares of the
coefficients. Another measure is the equivalent defocus,
M., measured in diopters, and given by

47v/3RMS
e =, (2)
pupil area
where RMS is measured in pum, and pupil area is given in
mm? (Thibos, Hong, et al., 2002).

We note that “equivalent defocus” is a possibly mislead-
ing term since two aberrations with the same equivalent
defocus may have very different blur point spreads and yield
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very different acuities. We adopt it only as a means of
indexing various aberrations and do so only because it is the
index used by Cheng, Bradley, et al. (2004).

Acuity versus aberrations

The data we used in this research have been described
previously (Cheng, Bradley, et al., 2004). They consist of
measurements of acuity (LogMAR) for each of 67
particular wavefront aberrations. Each aberration was
produced by computing the aberrated image, which was
then viewed through an interference filter to yield
luminance of 264 cd/m? at 556 nm. Appropriate optics
were used to ensure that specific controlled aberrations
could be introduced. The test objects were Sloan letters.
Four observers participated. To simplify matters, the
observers will be identified throughout by color names
(Red, Green, Blue, Brown) and in figures by the
corresponding color. Two observers (Red and Green)
viewed a set of 45 aberrations, the other two (Blue and
Brown) viewed a different set of 22 aberrations.

The aberration conditions consisted of three levels (0.1,
0.21, 0.5 D) of a higher order aberration, combined with

Observer Low High

Green and Red {2, -2} {4, -2}
{2, 2} {4, 2}

Brown and Blue {2, 0} {4, 0}

Table 1. Aberration conditions used for each observer.

seven or eight levels of a lower order aberration (defocus
or astigmatism), as specified in Table 1. In addition, zero
aberration conditions were measured for observers Red,
Green, and Blue.

Visual acuity was measured by collecting psychometric
functions for letter identification as a function of letter
size. Ten presentations of each of eight to ten logarithmi-
cally spaced letter sizes were used for each function. From
each psychometric function, acuity was estimated as the
size yielding 55% correct. The acuity data from this
experiment are plotted in Figure 1. Each curve shows the
variation in acuity due to variation in the amount of
second order aberration, added to a fixed amount of fourth
order aberration. Each curve shows a minimum—the
defocus or astigmatism at which acuity is best—but the
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Figure 1. Acuity as a function of defocus or astigmatism in the presence of fixed fourth order aberrations. Line dashing indicates different
amounts of the fourth order aberration (solid: 0.1 D, small dash: 0.21 D, large dash: 0.5 D). The colors identify individual observers. Data

from Cheng, Bradley, et al. (2004).
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positions of these minima clearly vary with the amount of
higher order aberration (indicated by different dashing).

Not shown in Figure 1, but used in the subsequent
calculations, are the three data points for zero aberration
obtained from observers Red, Green, and Blue; these had
values of —0.23, 0.036, —0.076 LogMAR, respectively.
We were unable to obtain data for one additional condition
from Cheng, Bradley, et al. (2004), consisting of pure
astigmatism {2, 2} combined with coma {3, —1}. It is
unlikely that these 12 data points would have a large effect
on our general conclusions.

Acuity model

All of the acuity models that we have considered are
instances of what is generally called “template matching.”
An overview of this general model is shown in Figure 2.
In this example, the image of a letter “K” is first filtered
by the optical transfer function (OTF) and then by a neural
transfer function (NTF) to form the neural image, which
is then perturbed by additive noise. In our simulations, the
noise was always zero-mean Gaussian white noise. The
noisy neural image is then compared to a set of template
images, one for each candidate letter, and the closest
match selected.

The algorithms we considered varied in two aspects: the
matching rule and the templates. The matching rules that we
have considered are maximum probability (ideal observer),
minimum distance, and maximum normalized correlation.
The templates we have considered are the original letter
images, the images after filtering by diffraction-limited

K —»[ OTF ]
Neural
image
Noise
“K 4—[ Match ]47 Lg
Templates

Figure 2. Template matching model for letter acuity.
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optics and neural filter, and the images after filtering by
aberrated optics and the neural filter (the neural images).

As will be noted below, we considered varying degrees
of spatial uncertainty of the templates—in other words,
we considered multiple positions of each template.
However, we did not consider other forms of uncertainty,
such as orientation or size.

General methods

The models described here are implemented in the
digital image domain. Inputs and outputs of the model at
each stage (except the final classification) are discrete,
finite digital images. The images were 256 x 256 pixels,
with a nominal resolution of 313.91 pixels/degree, so the
images subtended 0.815 degrees. Computations were
conducted in floating point and were implemented in the
Mathematica programming language (Wolfram, 2003).

Letter images

We created images of Sloan letters at LogMAR values
from —0.6 to 0.7 in steps of 0.05. The images were
created using the rendering capabilities of Mathematica,
and the Sloan PostScript font provided by Denis Pelli
(http://www.psych.nyu.edu/pelli/software.html). In the
simulations, the image pixel values were scaled to real
numbers in the range {0, 1}. The letters were black (0) on
a white (1) background.

We have provided a file called SloanLetterImages that
contains all of the Sloan letter images used in this project.
This file is described further in Appendix A.

Optical transfer function

The optical transfer function (OTF) for a given
aberration state was computed using standard methods
(Artal, 1990), as illustrated in Figure 3. Starting from a set
of Zernike coefficients, we first created a discrete image of
the wavefront aberration, WA. We then computed the
generalized pupil image, defined as

GP(5,) = Pl exp| 5T WAG) . ®)

where P(x, y) is the pupil aperture image defined as 1
within the pupil and 0 elsewhere. The point-spread image
is then computed as the squared modulus of the Fourier
transform of the generalized pupil image. In order to
obtain a desired resolution of the point-spread image, the
generalized pupil image may first be embedded in a larger
image of zeros. The OTF is obtained as the discrete
Fourier transform (DFT) of the point-spread image. The
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Figure 3. Computation of aberrated retinal images. (Top) wavefront aberration image; (middle) point-spread image and OTF; (bottom)
original letter (LogMAR = 0.3) and aberrated image of letter. The aberrations pictured here are one of the conditions from the experiment
of Cheng, Bradley, et al. (2004). They consist of 0.5 D in each of primary astigmatism and secondary astigmatism. In list notation, the

aberrations are {{2,2,0.451}, {4,2,0.451}}.

letter image is then convolved with the point-spread image
to obtain the retinal letter image. This convolution is
implemented by multiplication of the OTF and the DFT
of the letter image, followed by an inverse DFT. In all of
the simulations in this paper, the pupil diameter is set to
5 mm. This is the value used to compute the images in the
experiment of Cheng, Bradley, et al. (2004).’

Neural transfer function
In the model pictured in Figure 2, the overall contrast

sensitivity function is the product of the optical and neural
transfer functions (OTF and NTF). The NTF can thus be

derived by dividing the CSF by the OTF. We have
recently proposed a standard form for the contrast
sensitivity function for foveal contrast detection (Watson
& Ahumada, 2005). This function incorporates both a
radial component and an oblique-effect component. We
adopt this function here as the standard contrast sensitivity
function (SCSF), using the parameters of Standard A from
Table 5 of that report.

However, since the SCSF incorporates both optical and
neural transfer functions, it is necessary to remove the
optical component since that will be separately specified
by the OTF of the model.

We accomplish this by constructing a mean optical
transfer function (MOTF), making use of a published
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Figure 4. Derivation of the neural transfer function (NTF) (blue)
from the standard CSF (SCSF) (red) and mean optical transfer
function (MOTF) (green). Versions of the SCSF and NTF for a
frequency scale of 2 are also shown in pink and light blue,
respectively. Gray dashed curves are from Campbell and Green
(1965), obtained by fitting cubic polynomials to their data for two
observers and normalizing each curve at 4 cycles/deg.

formula that includes parameters for age and pupil size
(IJspeert, van den Berg, & Spekreijse, 1993). We assumed
an age of 35 years and a pupil size of 5 mm. The resulting
MOTEF is pictured in Figure 4.

To obtain the neural transfer function NTF, we divide
the SCSF by the MOTF. These three functions are
pictured in Figure 4. The NTF has been normalized by
its maximum value to give a peak gain of 1.

Frequency scale

The MOTF and SCSF are based on population averages
and may not be accurate for the observers we are
simulating here. Further, different observers may have
different NTFs. To investigate possible variations in the
neural transfer functions of different observers, we
introduced a parameter ¢, the frequency scale, that
multiplies the two parameters f; and f; of the SCSF
(Watson & Ahumada, 2005). This has the effect of
shifting the SCSF horizontally in the log-log coordinates
of Figure 4. This in turn has the effect of shifting the NTF
to higher values. Higher values of the frequency scale
correspond to higher values of acuity. Examples of the
SCSF and NTF for a frequency scale of ¢ = 2 are shown
in pink and light blue, respectively, in Figure 4.

This method of varying the NTF is somewhat arbitrary,
and other variations might produce a better fit to the data.
It has the advantage of providing a single parameter that
controls perhaps the most important aspect of the NTF: its
sensitivity at high spatial frequencies. For comparison, we
also plot in Figure 4, as dashed gray curves, the NTFs
derived by Campbell and Green for two subjects from
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visibility of interference fringes (Campbell & Green,
1965). These are close to our NTF for ¢ = 1.

Neural images

Neural images were computed from letter images by
filtering by the OTF and the NTF. The filtering was
computed digitally in the frequency domain, using
discrete sampled versions of the filters.

Matching rules
Ideal observer

An ideal observer limited by optics, internal noise, and
spatial uncertainty can be implemented with a particular
matching rule. The rule computes the Bayesian posterior
probability of each candidate letter, possibly shifted by
integer pixel amounts horizontally and vertically, and selects
the largest (Watson & Fitzhugh, 1989). The templates used
by this model are the neural images of the aberrated letters.

We specify the spatial uncertainty in terms of the prior
probability of integer pixel spatial shifts of the test image
relative to the template, specified by a probability density
u(x). We considered varying amounts of spatial uncer-
tainty, but report results only for two special cases: no
uncertainty or complete uncertainty.

Categorization problems can often be analyzed in terms
of discriminants: functions on the data indexed by
category alternatives, the largest of which identifies the
selected category (Duda & Hart, 1973). We can think of
each discriminant function as computing a score for one
alternative and the alternative with the highest score wins.
The discriminant for the ideal observer can be written as

g = log [Zuo«)exp (5@t + n<x>>)]
1
5z 912 (@)

where s5; and s; are the sample and the candidate letter
neural images, respectively, ® is the cross-correlation
operator, and n is the Gaussian noise with standard
deviation o. This quantity is computed for each candidate
letter j, and the value of j for which g; is largest identifies
the letter. A summary of model notation is provided in
Appendix E.

Minimum distance

If we again consider the templates as the neural images
of the candidate letters and regard the neural images as
points in a space with dimensions equal to the number of
pixels, then we can consider a matching rule that selects
the template closest to the noisy neural image of the test
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letter. We have only considered this rule for the case in
which the templates are the neural images of the candidate
letters (#; = s;), in which case the determinant for this
minimum distance rule is given by

g = max[5(x) @ (x(x) + n(x))| =5 5 P (5)

This expression is derived in Appendix B. The expression
also allows for spatial shifts of the template (spatial
uncertainty), although in this case all possible shifts are
treated equally.

Normalized correlation

Normalized correlation is a widely used pattern match-
ing algorithm (Duda & Hart, 1973). The normalization is
applied so that patterns will be matched on the basis of
shape rather than mean value. In the present context, it is
an interesting rule because it allows us to consider
templates other than the aberrated neural images.

The discriminant for normalized correlation is

gj = max [£;(x) ® (sx(x) + n(x))], (6)

where 7; is the normalized template for the letter indexed
by j. As discussed below, this may be the aberrated neural
image, the original letter, or a diffraction-limited neural
image. Note that the result of cross-correlating the test and
candidate images is itself an image, in which the value at
each pixel reflects the correspondence of the two images
when one is shifted by the coordinates of that pixel.
Taking the maximum selects the value at the shift with the
greatest correspondence. Thus, this rule also accommo-
dates spatial uncertainty, although the uncertainty here is
uniform over the image. An uncertainty function could be
introduced here, as in the ideal matching rule, but we have
not done so.

Comparison of Equation 6 with Equation 5 shows that
normalized correlation is an instance of minimum distance
when the templates are normalized.

Templates

For the normalized correlation rule, we considered three
types of templates: the original letters, the neural images
of the aberrated letters, or the neural images of the letters
filtered by diffraction-limited optics. The reasoning behind
these three choices was as follows. The aberrated neural
image is appropriate if the observer is able to learn a
template from prior experience of the letter under the
optics in question. This is also the template used by the
ideal observer. The original letter would be appropriate if
the observer retained a template, perhaps learned at a
larger size at which optical degradation would be
minimal, and mentally scaled down to the appropriate
size. The diffraction-limited case corresponds to an
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Identifier Rule Templates Uncertainty
ID Ideal Aberrated Zero

U Ideal Aberrated Infinite
DA Distance Aberrated Infinite
XA Cross-correlation  Aberrated Infinite
XD Cross-correlation  Diffraction limited Infinite
XL Cross-correlation  Letters Infinite

Table 2. Models and their attributes.

observer who has learned the letter under diffraction-
limited conditions. It may be viewed as a case intermedi-
ate between the other two.

In Table 2, we summarize the six models that we have
considered, which vary in terms of uncertainty, templates,
and matching rule. Each model is labeled with a particular
identifier for future reference.

Simulating acuity performance

We simulated performance using Monte Carlo methods.
First a specific model was defined, in terms of aberrations,
matching rule, templates, uncertainty, and noise level. We
then conducted individual trials, in which a test letter of a
particular size was randomly selected, filtered by optical
and neural transfer functions, and matched to the specified
templates. The decision of the model was then judged as
correct or incorrect. From trial to trial, we used a QUEST
adaptive procedure (Watson & Pelli, 1983) to vary the
letter size. Letter size varied from LogMAR = —0.6 to 0.7
in steps of 0.05. One hundred twenty-eight trials were
collected for each estimate of acuity.

Data were fit by a Weibull function with a 8 (slope) of 4
and a y (lower asymptote) of 0.1 (Watson & Solomon,
1997). The value of B = 4 was determined from a
preliminary simulation, as described in Appendix D. From
the fit, acuity was defined as the value of LogMAR at
which probability correct was P = 0.66. An example of
one simulation is shown in Figure 5. This acuity
estimation procedure was applied to each of the 67
wavefront aberration conditions used by Cheng, Bradley,
et al. (2004).

This simulation is similar to the experimental method
used by Cheng, Bradley, et al. (2004), although they used
a method of constant stimuli with 10 trials at each of ten-
letter sizes spaced 0.1 LogMAR apart and used a thresh-
old criterion of P = 0.55.

Estimating noise level

Performance of the acuity model is governed by the
amount of neural noise o,. We explored various shortcuts
to estimation of o, but ultimately determined that
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LogMAR

Figure 5. Results of QUEST staircase to estimate acuity for the
ideal observer with no uncertainty (o,. = 0 deg). The noise level
was o, = —1 dB. The points indicate proportion correct; the
vertical gray lines are 95% confidence limits based on binomial
variance. The red lines indicate the estimate of acuity as the
LogMAR for which probability correct is 0.66.

exhaustive testing of a range of alternative values was
required. Thus, for each model, we tested a sequence of
values of o, that bracketed the best fitting value.

Fast method

For the special case of the ideal observer with zero
spatial uncertainty (ID), a fast method of computing the
simulations is available. This method can also be used to
compute approximations to the other models.

Computing models that include spatial uncertainty
means considering all possible integer pixel shifts of each
template, which obliges us to generate a full noise image
and to compute the full cross-correlation with each
template on each trial of the simulation.

The calculations are greatly simplified if we consider
only one possible shift for each template: either zero shift
or that which yields the highest correlation with the neural
image. This latter variant is not itself a plausible uncertain
model since the observer could not know in advance what
template shift to use, but it may nonetheless be a
reasonable approximation, since the best shift with noise
may frequently equal the optimal shift without noise. The
details of how to compute this fast approximation are
given in Appendix C.

Note that this approximation is exact in one case: the
zero shift variant corresponds exactly to the ideal observer
with zero uncertainty. We have verified that in this case
the two methods give nearly identical results (they do not
give exactly equal results because both are Monte Carlo
simulations.

We note also that the approximations for the ideal
observer model are in fact identical to the approximations
for the distance model since the two models differ only in
their treatment of uncertainty.

For the matched filter models with uncertainty (IU, XA,
DA), both approximations are very close to the full
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simulation, but slightly more efficient, by about 0.5 dB
for shifted templates and about 1.5 dB with unshifted
templates.

For the unmatched filter models, the approximation is
not as close. For XD, the shifted template approximation
is about 5 dB more efficient, and the unshifted about 1 dB
better still. The RMS errors for the approximation are
about 0.02 larger.

Comparing model and data

Previous evaluations of models have generally been
content to report estimates of linear correlation between
data and model. This measure is problematic for several
reasons. First, it does not acknowledge the variance
among observers, which necessarily affects and limits
the maximum obtainable correlation. Second, correlation
measures only the degree of linear covariation, not the
absolute agreement between corresponding values of
model and data. For example, despite a high correlation,
the linear relation between data and model could have an
intercept far from zero and a slope far from unity.

A better absolute measure of performance might be the
RMS error between model and data. But here the presence
of several observers with possibly different average
acuities presents a problem. A solution in the present case
is to optimize the one parameter of the model (o))
separately for each observer. In Figure 6, we plot for each
model the RMS error for each observer as a function of
o,. For all of these results, the frequency scale ¢ = 1.
Note that each point in this figure is based on 128 Monte-
Carlo trials at each of 67 aberration conditions. From
repeated measures of a number of the conditions (see
model XD in Figure 6), we estimate the standard deviation
of the RMS values to be 0.0024 LogMAR.

For each observer and model, a curve has been fit to the
results to provide a continuous estimate of the minimum
and the location of the minimum. These curves are shown
in Figure 6, along with the locations of the minima shown
by colored arrows. This method of estimating the
minimum RMS error for a given model and observer will
be used in the remainder of this paper.

Matched and unmatched templates

In Figure 6, there is a clear difference in the error
functions between the models for which the templates are
the aberrated images (ID, IU, DA, XA) and those for
which they are not (XD, XL). We will call these
“matched” and “unmatched” templates, respectively. For
the former, the error functions are nearly symmetrical
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Figure 6. RMS error for each observer as a function of the neural noise o,. Observers are indicated by standard colors. A continuous
curve has been fit to each set of points, and the location of the minimum is shown by an arrow. For all of these results, the frequency scale

é=1.

about a clear, deep minimum. For the latter, the curve is
much more shallow to the left of the minimum. This
difference may be due to the fact that, for unmatched
templates, as noise tends towards zero, the matching rule
is not guaranteed to converge to a correct decision.
Examination of model predictions as noise is reduced
shows that, especially for model XL and observer Red,
performance asymptotes at about —16 dB.

The partition of models into matched-template and
unmatched-template classes is reinforced by the correla-
tions between results for the various models, as shown in
Figure 7. These are correlations between the LogMAR
predictions from each model when at the noise level
yielding the best fit to the data. Correlations within
matched or unmatched groups are always above 0.96,
while those between matched and unmatched range
between 0.71 and 0.85 (the darker region in the table).

Estimated noise

Considering a single curve in Figure 6 for one model
and one observer, the minimum of the curve reflects the

quality of fit, while the location of the minimum reflects
the best estimate of the noise parameter o,. In Figure 8,
we plot the best estimates of o, as a function of model,
with each observer again represented by their designated
color.

o § 2 £ 2 =

ID 0.98 0.98 0.97
DA 0.98 0.98 0.97
IU 0.98 0.98 0.97
XA 0.97 0.97 0.97
XD

XL

Figure 7. Correlation between models. The gray level in each cell
is linear with the value.
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Figure 8. Estimates of noise parameter o, for each model and
observer.

Differences among observers

For a given model, it is clear that each observer has a
different estimate of o,. In general, these estimates are
ordered in agreement with the empirical differences in
sensitivity: Red is the most acute observer, and Green and
Blue are the least acute (see Figure 1).

Differences among models

While a small estimated noise is symptomatic of an
acute observer, it is also indicative of an inefficient
matching rule and templates. Intuitively, we are able to
add more noise and get the same performance, when a
model is efficient. We can directly compare the efficien-
cies of the various models with a re-plotting of the results
in Figure 8. In Figure 9, we plot the relative efficiency of
each model compared to the ideal. These values are
obtained from the square of the ratio of the estimated
noise values for the two models compared. The four
observers are very similar. The ideal observer with
uncertainty (IU) and the distance model (DA) are about
74% as efficient as the ideal (ID), followed by cross-
correlation rules with aberration (XA, 53%), diffraction-
limited (XD, 27%), and letter templates (XL, 9%),
respectively.

We should note that this estimate of efficiency is not a
direct comparison of the performance of two models but is
rather a comparison of two models that are fit to a

Efficiency
o o
o [o]

°
S

o
(V)

o

ID DA U XA XD XL
Model

Figure 9. Relative efficiency of the models.
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common set of human observer data. To the extent that
the fits are good, the measure will approach a conven-
tional efficiency.

Effect of frequency scale

The results we have discussed so far have used the
neural transfer function derived from a standard CSF
(Figure 4). In light of the large variations in the quality of
fit and acuity, among the observers, we considered
whether some of this variation might be due to variations
in the individual CSFs and, in particular, to the high-
frequency fall-off of these functions. To manipulate this
fall-off, we varied the frequency scale parameter ¢ (see
Frequency scale section). Initially, we explored this
parameter with the ID model, using the fast method for
which it is an exact solution. Each condition was
simulated with 512 trials. For each model and observer,
the results at a broad range of noise levels were analyzed
as in Figure 6 to estimate the minimum RMS error. The
results are shown in Figure 10.

The figure shows that the fit does indeed depend
significantly on the frequency scale, and that the optimum
is not at ¢ = 1 for any observer. For observers Red and
Brown, the optimum is near to ¢ = 2. For observers Green
and Blue, the optimum is near to ¢ = 1.3.

In light of these results, we completed additional
simulations for the remaining models, using the slow
but accurate method, at values of ¢ = 1.5 and 2. These
results are shown in Figure 11 along with the earlier
results at ¢ = 1 and the ID results from Figure 10. It
should be noted that the ID results (black points) are more
accurate since they are derived from 512 trials per
condition, while the other model results are based on only
128 trials per condition.

0.12 T T T T T
0.10 A

0.08 4

0.06
se aet]

0.04 ‘\'\'\c\.\‘ e ]

0.02|....|.V.'|.. '...n....n...

05 1.0 15 2.0 25 3.0
Frequency scale ¢

RMS error (LogMAR)

Figure 10. Fit of the ID model as a function of the frequency scale.
The curves are interpolating polynomials. The arrows show the
estimated minimum for each observer.
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Figure 11. Fit of all models as a function of frequency scale. Each panel is for a different observer, indicated in the upper right. Each model

is represented by a different color.

As a general observation, the other models mimic the
behavior of the ID model with respect to the frequency
scale ¢. The best fitting frequency scale appears to be
approximately the same for all models.

Comparison of the red and the black points shows that
spatial uncertainty has little effect on the fit of the ideal
model.

For three of the observers (Red, Green, and Brown), the
ID model is generally the best fit. For these observers, the
other matched template models (IU, DA, XA) fit almost as
well, while one or both of the unmatched template models
(XD and XL) fit substantially worse. For one observer
(Blue), there is an indication that the unmatched template
models (XD and XL) may fit somewhat better. This may
be a genuine difference in recognition strategy between
observers.

Although it is not the absolute best fit for every
observer, the ID provides a near-to-best fit for three of
the four observers. To summarize the overall performance
of that model, we consider its results for near-to-optimal
frequency scales of ¢ = 1.32, for observers Blue and
Green and 2 for observers Red and Brown.

One view of the overall performance of a model is a
plot of measured versus simulated values of LogMAR.
This plot is given for the model ID, for the noted values of
¢, in Figure 12. The correlation between the two sets of
values is 0.913. For comparison, the best correlation
reported by Cheng, Bradley, et al. (2004) was 0.85. The
total RMS is 0.056 LogMAR. The metrics considered by

Cheng, Bradley, etal. (2004) did not report RMS error since
they did not attempt prediction of absolute LogMAR
values. Correlation coefficients and RMS values for the
group and for the individual observers are shown in Table 3.

0.4

0.3

0.2

Data

r=0.913 RMS =0.056

-0.2 -01 0 0.1 0.2 0.3 0.4
Model

Figure 12. Data versus ID model. For each observer, the best-
fitting value of noise o, and frequency scale ¢ has been used.
The red line is the best fitting straight line fit to the points by
minimizing error in the data dimension. It has the form y = 0.003 +
0.952x. The observers are indicated by the standard colors.



Journal of Vision (2008) 8(4):17, 1-19 Watson & Ahumada 12
Observer ¢ RMS r Comments on model behavior
Group 0.056 0.913 For the various matched template models, the best
Blue 1.32 0.046 0.933 . - . . .
predictions (as in Figure 13) are very similar. Once
Green 1.32 0.048 0.905 s .
equated for sensitivity to noise, they behave almost
Red 2 0.074 0.868 identically. As a group, their predictions are generall
Brown 2 0.034 0.971 Y Eop, p g y

Table 3. Quality of fit for the ID model for the four observers and
the group.

We can also plot the experimental data along with the
simulated results, for each observer using the optimal
value of noise and the near-optimal value of ¢. These
results are pictured for the ID model in Figure 13, which
shows graphically how well the model tracks the
variations in acuity with aberration.

flatter (show less effect of aberrations) than the data and
shift vertically with variations in noise. In other words,
LogMAR acuity is the same function of noise at every
aberration condition.

For the unmatched templates, the prediction curves tend
to be deeper (show more of an effect of aberration) than
the matched template models, and in addition, the depth is
a function of noise. This is illustrated in Figure 14, which
shows XD predictions for the same aberration conditions
at two noise levels: —24 and 0 dB. At the low noise level,
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°
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0.0 0.5 1.0 1.5
Defocus {2, 2} (D)

Figure 13. Data (color) and model (gray) for near best fitting values of noise and frequency scale ¢ for each observer for the ID model.

Total RMS error is 0.056 LogMAR.
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Figure 14. Predictions of XD model for defocus conditions at noise
levels of —24 (top) and 0 dB (bottom).

the predictions for defocus-only (solid line) cover a range
of about 0.6 LogMAR, while at the high noise level, the
range is about 0.33. This deepening effect does not occur
for model XL, perhaps because of the asymptotic behavior
at low noise levels discussed above.

The fact that the XD model shows a greater effect of
aberration is perhaps not surprising. In that model, as
aberrations are added or intensified, the signals received
depart more from the templates. In contrast, for the
matched template models, increased aberration reduces
performance only because some components of both
signal and template become lost in the noise.

Acuity metric

As noted above, we define a metric as a simple
calculation that mimics the data to a reasonable degree,
and that may have practical value. Here we describe the
design of a metric that transforms an arbitrary wavefront
aberration into a LogMAR acuity value. In describing this
design, it should be noted that we are providing only a
recipe, and some intuition, not a formal model.

The starting point for this metric is the set of neural
images generated for the ten Sloan letters of a particular

Watson & Ahumada 13

size by a particular aberration. These can be computed
using the methods described in the Acuity model section.
We write these neural images s;, where j indexes the
individual Sloan letter. We then consider a matrix r;
consisting of the dot products of each neural image with
each other. We normalize these dot products by the
modulus of each neural image,

Sj Sk

i I

(7)

Tik =

These normalized values are akin to the values used by
the normalized correlation model, or the ideal observer
model, when spatial uncertainty is absent. We imagine
that each value is perturbed by uncorrelated Gaussian
noise with standard deviation o (in fact, if the noise is
derived from noise at the input, there would be correla-
tions, but we ignore that here for simplicity). If the letter
with index j is presented, then the observer would select
the entry in the jth row that is largest. The probability that
the correct column is selected is equal to the probability
that its entry is larger than each of the incorrect entries. To
compute this probability, it is useful to first compute the
difference between each column entry (r;;) and the one
corresponding to the correct answer (r;;) and to divide
these by the standard deviation o,

Fio— 1
L= ik T (8)

dj (o)

B

Then the probability of being correct can be written

Py= [T Flr+ ) ©)
. ki

where f and F are the normal density and distribution
functions, respectively.

The logic behind this expression is that we compute, for
a value x, the probability that the correct entry equals x,
and that all the other entries are less than x. We then
integrate this over all possible values of x. We note that in
practice the integral may be taken over the range { —3, 3}
without great loss in accuracy. This calculation is
illustrated in Figure 15.

We also note that another approximation is available.
Consider the individual probabilities of each incorrect
entry being less than the correct entry. If these were
independent, then the probability of being correct would
just be their product:

P =T]F(du)- (10)

k#j
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Figure 15. lllustration of the acuity metric calculation of the
probability of a correct response to the presentation of one letter
(Equation 9). The black curve is the Normal probability density
fix), corresponding to the probability distribution of the cross-
correlation between the neural image of the letter presented and
its corresponding correct template. The red curves are the normal
probability cumulative distribution functions, shifted to the loca-
tions of the cross-correlations between the neural image and the
nine incorrect templates F(x + dy). The product of the red curves
is shown by the blue curve, corresponding to the probability that
none of the incorrect templates yields a cross-correlation greater
than the specified value. The green curve is the product of black
and blue curves. Its integral is the probability correct—in this
example, Py = 0.38.

Even though these probabilities are certainly not
independent, this approximation is reasonably close to
the more accurate formula in Equation 9.

Finally, the predicted percent correct in the acuity
experiment is the average over all rows (letters),

P =P, (11)

Note that this quantity is a function of the letter size.
We can compute these values for the range of sizes used
in the experiment to produce a psychometric function,
yielding probability correct versus LogMAR, as shown in
Figure 16.

In the actual experiment, thresholds were defined as the
LogMAR value at which the probability correct was 0.55.
Accordingly, for each aberration, the LogMAR value
yielding the criterion of 0.55 is read from the psycho-
metric function. This procedure is illustrated by the red
lines in Figure 16 for the particular case of zero
aberration.

To evaluate this metric, we have applied it to all of the
data of Cheng, Bradley, et al. (2004) discussed earlier in
this paper. We explored variations in the frequency scale
¢ and the standard deviation o. We observed that a range
of parameter values gave good fits. The best fit was
obtained at ¢ = 2, o = 0.38, at which point the RMS
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Figure 16. Probability correct versus LogMAR computed by the
acuity metric. Each curve is for one aberration. The red curve is
for the zero aberration condition, and the red lines illustrate
estimation, for that aberration, of the LogMAR required to yield
0.55 correct. Other parameters: ¢ = 2, o = 0.38.

error was 0.07. The RMS error is plotted against
frequency scale in Figure 17. In this figure, each point
may have a different value of the noise parameter . Note
that the optimal value of the frequency scale ¢ is roughly
the same as that for our two more acute observers (Red
and Brown), as estimated by the model.

A variant of this metric is one in which we begin not
with the dot products of pairs of unshifted neural images,
but rather with the largest dot product that can be obtained
through some shift of one of the images. This is analogous
to spatial uncertainty. In Figure 17 we also show, in red,
the fit of this variant. The performance is similar, but not
quite as good as that for the standard version.

The best version of the metric yielded a correlation of
0.86. We note that other metric parameter values yield

0.081

~ 0.078

0.076

0.074

0.072

RMS error (LogMAR

0.07

-
-
()]

2 25 3
Frequency scale ¢

Figure 17. Minimum RMS error as a function of frequency scale
for fits of the acuity metric. The black points are the standard
version of the metric; the red points are a version with optimally
shifted images.
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Figure 18. Correlation between metric and data. Observers are
indicated by standard colors. The RMS error is 0.07.

correlations as high as 0.874, but we believe RMS error is
the better measure of the performance of the metric. The
predictions of this metric are shown in Figure 18.

We note that the fit of this metric is slightly poorer than
that of the model, but this is due in part to the fact that the
model allowed different frequency scales and different
noise values for each observer. Even so, it is worth noting
that for individual observers, the metric yields correlations
of 0.95, 0.88, 0.91, and 0.97.

To allow others to experiment with our metric, we plan
to provide a portable version as described in Appendix F.

In this study, we evaluated the fit of a set of template-
matching models, incorporating both optical and neural
filtering, to a set of acuity versus aberration data. In
general, the class of models we have considered fit very
well. Relative to prior metrics, which attained a correla-
tion of 0.85 (Cheng, Bradley, et al., 2004), the best model
here attains a correlation of 0.913, and indeed all models
tested (including our metric) attain correlations of over
0.86. The best RMS error we have obtained is about 0.056
LogMAR. We cannot directly compare this RMS value to
prior fitting results as those metrics did not attempt to
generate absolute LogMAR predictions, which are
required for the RMS calculations.

The success of the ID model means that we now have
a successful operational account of how particular
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aberrations reduce visual acuity. This account may prove
useful in future study of the effects of specific aberrations.

In terms of RMS error, the ID model appears to provide
the best overall fit, but models IU, XA, and DA fit almost
as well. The unmatched template models XD and XL fit
slightly or appreciably less well for three of the four
observers but better than ID for one observer (Blue). This
discrepancy may reflect a genuine difference in strategy
among observers. Note that the matched template models
assume that the observer has “learned” the aberration, so
that they are able to construct accurate aberrated tem-
plates. Elsewhere, strong evidence has been provided that
observers do adapt to their own distinctive aberrations
(Artal, Guirao, Berrio, & Williams, 2001). Perhaps
observer Blue has not learned the experimental aberra-
tions as well as the other observers.

One of the observers (Red) had an RMS error twice as
large as the best fit observer. Observer Red was also
characterized by high acuity and a more pronounced effect
of aberration on acuity. The differences in fit among
observers were quite general across models. We do not yet
fully understand why this particular observer was less well
fit by our models.

The neural transfer functions that fit best differed among
our observers. Two observers (Red and Brown) required a
function that passed considerably higher frequencies (¢ =
2) than for the other two observers (¢ = 1.32). Both sets of
observers were more acute than our “standard” observer
(¢ = 1). It is perhaps not surprising that observers should
differ in this regard, given the known variations in cone
density (Roorda & Williams, 1999). With respect to the
standard observer, it was derived from a population of 16
observers of unknown age and with uncertain optical
aberrations (Watson & Ahumada, 2005). We must also
acknowledge that the data from Cheng, Bradley, et al.
(2004) used here come from only four observers, and we do
not know where they lie relative to the larger population.

In contrast to the metrics described by Cheng, Bradley,
et al. (2004), our models, and indeed our metric, are
process models that begin with a stimulus image and
proceed to a letter identification. Their success shows that
such process models and metrics can in fact provide a
good account of the data. The virtues of process models
here are threefold: (1) they assist in understanding the
mechanisms that may operate in human performance,
(2) they can be applied to new types of aberrations, and
(3) they can be applied to completely new sets of optotypes
or indeed different identification tasks altogether.

Another process model applied to an acuity task was
described by Nestares et al. (Nestares, Navarro, & Antona,
2003). While similar in many respects to the present
effort, their model was considerably more complex,
involving retinal sampling, a pyramid decomposition into
Gabor channels, and identification based on Bayesian
inference on the channel outputs. They also report that
simpler models (like those employed here) fail to simulate
the effects of various optical degradations, which appears
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to be contrary to our results. While we certainly cannot
rule out a role for spatial frequency channels in human
letter identification, from a practical point of view it is
useful to know that they are not required to obtain good
predictions.

Spatial uncertainty may be required in a model for two
reasons. The first is that the observer may be uncertain.
The second is that if the templates are unmatched, then the
aberration may cause a spatial shift in the letter, and the
template must be shifted to obtain the best match. For
matched templates, this extra shifting is not required
because both signals and templates are shifted equally. In
one pair of models (ID and IU), we directly tested the
effect of including spatial uncertainty. The two models
give very similar results (except for a modest difference in
efficiency), which suggests that for matched template
models, spatial uncertainty does not have a significant
effect.

Although our models fit quite well, systematic devia-
tions from the data remain, suggesting room for improve-
ment. Among the plausible features that we have not
included are imperfect or noisy templates (Mcllhagga &
Piikkonen, 1999).

In the Introduction section, we discussed the differ-
ence between models and metrics. One goal of this
project was evaluate various models in order to lay the
groundwork for a useful metric. We found that a metric
based on the XA model worked quite well, yielding an
RMS error of 0.07. Because this metric is derived from a
plausible model, and because it depends upon the actual
letter images rendered by a particular aberration, we
expect it to be much more robust to changes in aberration
type or changes in optotype than prior metrics, which
were fit only to a particular set of aberrations and did not
include either a process model or the actual acuity
optotypes.

Conclusions

An ideal observer model that incorporates both optical
and neural transfer functions provides an excellent
account of acuity in the presence of various aberration
mixtures.

Other template-matching models work almost as well.
For one observer, a model with templates consisting of
diffraction-limited letters or the letters themselves per-
formed better than the ideal observer model.

The contrast sensitivity function defined for the so-
called Spatial Standard Observer (Watson & Ahumada,
2005) provides a successful starting point for the
construction of the neural transfer function. However, all
observers required that this function be shifted to higher
frequencies to obtain the best fit.
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A simple metric, based on the ideal observer or
normalized correlation model but not requiring Monte
Carlo simulations, also provides a good prediction of the
data.

Appendix A: File of letter images

With this report, we have provided a file called
SloanLetterImages that contains all of the Sloan letter
images used in this project. The letter images are arranged
in a sequence in which letters vary first alphabetically,
then by size. Each image is 256 x 256 pixels, with a
nominal resolution of 313.91 pixels/degree, thus sub-
tending 0.815 degrees. The letter sizes vary from
LogMAR of —0.6 to 0.7 in steps of 0.05, for a total of
27 sizes. Within each image, each pixel is represented by
a single byte representing an unsigned integer, and the
ordering of bytes with respect to pixels is left to right, top
to bottom. The images are provided in a single binary file
of 10 * 27 * 256 * 256 = 17,694,720 bytes.

In Mathematica, the images can be read in using the
expression:

images =
Fold [Partition,
Import[“SloanLetterImages”, “Byte”], {256, 256, 10}]

In MatLab, the images can be read in using the
expression:

imfid = fopen(‘SloanLetterImages’, ‘r’);

images = fread(imfid); size(images);% 17694720 1
n = 256; nsize = 27; nlet = 10;

images = reshape(images, [n n nlet nsize]);
images = permute(images(:,end:-1:1,:,:),[2 1 3 4]);
image (images(:,:,3,27)); colormap(gray(256));axis
image;

Appendix B: Minimum distance

Here we derive the discriminant for the minimum
distance model. The noisy neural image due to presenta-
tion of letter indexed by £ is

sn(x) = sg(x) + n(x). (B1)

The distance between template displaced by v and the
noisy neural image can be written

diy =|| 1ix(x) =sn(x) |* (B2)


http://journalofvision.org/8/4/17/supplement/SloanLetterImages.bin
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Expanding the squared modulus and recognizing an
expression for cross correlation, we have

div =[ 4x) I + [ sn(x) || —5(x) ®sn(x).  (B3)

The minimum of this quantity over v is given by

max 609 @ ()] =3 1 66017 =3 sn() [P (B4)

overx

But the final term is constant for all j, so it is sufficient to
use the discriminant

g =max [109 ®n(x)| = 3 50|

overx

= max [ ® (se(x) + ()] =5 1 5x) [P (B9)

overx

Appendix C: Fast simulation
method

The acuity model simulations may be greatly acceler-
ated by assuming in separate simulations, one of two
possible positions for each template: either the unshifted
template or the version of each template shifted to
optimally match the letter presented. In this case, each
of the model discriminants is based on the simpler
quantity

¢j = 1x(x) (%) + 4(x) - n(x), (C1)

where ¢ indicates the dot product, and f;;(x) indicates
template j unshifted or shifted optimally for neural image
k. Here it is not necessary to compute the actual noise
image n(x) or its dot product with the template; instead we
create J random deviates that will have the same
distribution as the results of that dot product. Specifically,
consider the matrix C consisting of the correlations of
each neural image with each shifted template. Then
consider the SVD of C

UVW =, (C2)

where * indicates the Hermitian transpose. V is a diagonal
matrix which contains the singular values. Then we
compute the matrix M

M =UVV, (C3)
and finally the vector m of J noise samples

m = Mn. (C4)
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Then we can write
¢ = lj7k(X) 'Sk(X) + m. (CS)

For a given set of templates, the matrix C can be
computed in advance for each letter size and each
aberration condition.

Appendix D: Slope of
psychometric function

In our simulations, we have used a QUEST psycho-
metric procedure and have fit the resulting data with a
Weibull function. In both steps, it is advantageous to
know the approximate value of the slope B of the
psychometric function. To discover this, we conducted
1024 simulated trials of the ideal observer model with
zero uncertainty (ID) on the diffraction-limited condition
(Z = {}). We used a version of QUEST that scatters the
trials somewhat about threshold. Strength is measured in
units of LogMAR/20. The Weibull fit yields § = 3.99. We
have conducted additional simulations for other conditions
and uncertainties, with similar results (8 between 3 and 5).
In subsequent simulations, we have used a value of f = 4
in the QUEST procedure and in subsequent fitting of the
data.

Appendix E: Notation

Ok discriminant for letter,

t(x) template for letter,

i(X) normalized template for letter,
sn(x) noisy neural image

® cross correlation operator
n(x) noise image

Sk(x) neural image for letter,

o neural noise standard deviation
u(x) spatial uncertainty

b frequency scale

f Normal probability density

F Normal probability distribution

Appendix F: WFAMetric

WFAMetric is a computer program to compute acuity
from a wavefront aberration, defined by a set of Zernike
coefficients, using the formulas provided in the Acuity


http://vision.arc.nasa.gov/projects/mfametric/
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metric section. We are developing a portable version of this
program that we hope to share with the research community.
When and if we are able to do so, the program will be
available at http://vision.arc.nasa.gov/projects/mfametric/.
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1Cheng, Bradley, et al. (2004) computed images corres-
ponding to a 5-mm pupil but had the observers view them
through a 2.5-mm pupil in order to minimize intrusion of
the observer’s own aberrations. They state that they
compensated the calculated images for the effects of the
2.5-mm pupil. However, the 2.5-mm pupil zeros frequen-
cies beyond a limit of about 78.5 cycles/deg (half the limit
passed by the 5-mm pupil), and for these frequencies no
compensation is possible. Thus, the images we compute
contain energy above 78.5 cycles/deg that was not present
in the images seen by the Cheng, Bradley, et al. (2004)
observers. However, this discrepant energy is always less
than 0.5% of the contrast energy of each letter and is
effectively removed by our neural transfer function, which
at this frequency limit is less than 1% of its maximum.
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