Journal of Vision (2015) 15(2):15, 1-26

http://www.journalofvision.org/content/15/2/15 1

Letter identification and the Neural Image Classifier

Andrew B. Watson

Albert J. Ahumada

Letter identification is an important visual task for both
practical and theoretical reasons. To extend and test
existing models, we have reviewed published data for
contrast sensitivity for letter identification as a function
of size and have also collected new data. Contrast
sensitivity increases rapidly from the acuity limit but
slows and asymptotes at a symbol size of about 1
degree. We recast these data in terms of contrast
difference energy: the average of the squared distances
between the letter images and the average letter image.
In terms of sensitivity to contrast difference energy, and
thus visual efficiency, there is a peak around % degree,
followed by a marked decline at larger sizes. These
results are explained by a Neural Image Classifier model
that includes optical filtering and retinal neural filtering,
sampling, and noise, followed by an optimal classifier. As
letters are enlarged, sensitivity declines because of the
increasing size and spacing of the midget retinal ganglion
cell receptive fields in the periphery.

In this article, we explore and model some aspects of
human visual pattern classification. By pattern, we
mean a fixed spatial distribution of luminance con-
trast.! Experimentally, pattern classification is defined
by procedures in which an observer is presented with
one of a finite set of candidate patterns and is asked to
identify which of the candidates has been presented.
The set is typically small, the patterns are typically
simple (although that term has no formal definition),
and the observer is typically well trained on the set. A
canonical example is letter identification.

Our interest in pattern classification arises in part
from our belief that it exposes a fundamental step in the
complete process of visual information gathering. Just
as contrast detection, motion estimation, estimation of
disparity, and chromatic discrimination are funda-
mental operations in low-level vision, so too is the
ability to classify simple shapes. Object identification

NASA Ames Research Center, Moffett Field, CA, USA @ BI

NASA Ames Research Center, Moffett Field, CA, USA @ ><

and scene understanding are much more complex
operations, which presumably rely on understanding
the relations among many articulated parts, but it is
difficult to envision how they could operate without a
preliminary identification of those parts.

Pattern classification is also a powerful method with
which to study transmission of information within the
early stages of the visual system. Because the set of
patterns is finite and well defined, it is possible to
compute the performance of an ideal observer who uses
all available information (Tanner, 1961). Performance
of ideal observers with specific early losses of infor-
mation can also be computed. These model observers
can be compared with human performance (Banks,
Geisler, & Bennett, 1987; Banks, Sekuler, & Anderson,
1991; Geisler, 1989; Watson, 1987).

Additional reasons for our interest in pattern
classification are the many applied questions to which it
is central. An obvious example is measurement and
interpretation of visual acuity, which relies on classifi-
cation of letters or other optotypes (Watson &
Ahumada, 2012). Many aspects of reading can be
understood through an understanding of letter identi-
fication (Legge, 2006). Legibility of text and other
symbols is likewise dependent on pattern classification,
and thus labeling, signage, and visual interface design
could all benefit from a better understanding of this
process (Castro & Horberry, 2004). Finally, we are
interested in quantifying the end-to-end performance of
electro-optical visual imaging systems, such as surveil-
lance or other remote viewing systems; predicting
human pattern classification through these systems is a
promising performance metric (Watson, 2011).

In this report, we focus on one particular aspect of
letter identification: the effect of letter size. Size is of
interest in many applications, but it is also of
theoretical interest because it addresses the spatially
anisoplanatic nature of the visual field. As letters
become larger, they impinge more on the peripheral
visual field, which differs markedly from the fovea in its
spatial attributes. We will test whether a model of
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Name Year ms Lo (cd/m?) Color Font Weight Symbols Display % Obs x-height Eyes Log D,
Ginsburg 1978 o0 68 Black Helvetica Bold 12 Print 50 1 False 2 —0.992
Blommaert and 1987 64 150 Black  Eurostile Bold 26 Print 50 2 True 2 —=1.725
Timmers
Legge et al. 1987 o0 300 Black  Sloan Plain 10 CRT 75 3 False 2 —0.946
Strasburger et al. 1991 100 62 White Zeile Plain 10 CRT 67 4 False 2 —1.801
Alexander et al. 1994 249 25.3 Black  Sloan Plain 10 CRT 71 1 False 1 —1.549
Pelli and Farell 1999 200 50 White Bookman  Bold 26 CRT 64 2 True 2 —1.154
McAnany and 2006 35 60 White Sloan Plain 10 CRT 80 3 False 1 —2.402
Alexander
Aparicio et al. 2010 ed 200 Black Sloan Plain 10 Print 66 4 False 2 —0.946
Watson et al. 2015 221.6 116 White Sloan Plain 10 LCD 75 3 False 2 —1.299

Table 1. Nine studies of contrast threshold for identification of alphanumeric symbols as a function of size. Notes: Obs indicates the
number of observers; % indicates percentage correct at threshold; x-height indicates whether letter size was defined by the height of

ey,

a lowercase letter “x”; eyes indicates binocular or monocular viewing; and Log D, indicates the log contrast difference energy of the
set of symbols at a size of 1 degree and the specified duration (or 500 ms, if duration was indefinite). See text and Appendices 1 and 2

for additional details.

peripheral processing can account for variations in
performance with letter size.

We will base our analyses initially on eight previ-
ously published studies of contrast thresholds for letter
identification as a function of size. We will also collect
some similar data of our own, to allow direct
comparison with simple contrast sensitivity measure-
ments on the same observers and apparatus.

The model that we will explore is image based. By
this, we mean that the input is an actual letter image,
rather than some more abstract representation. This
constraint obliges us (and competing models) to
explicitly represent all stages in the classification
process. Our model is also operational: It actually
performs letter classifications. This constraint is also
important to ensure that we are in fact modeling the
relevant behavior. Details of our model will be given
below, but in summary, it is a template model limited
by noise, by visual optics, and by the size and spacing
of midget retinal ganglion cells (mRGC).

A number of image-based operational models of
letter identification have been proposed (Beckmann &
Legge, 2002; Chung, Legge, & Tjan, 2002; Gold,
Bennett, & Sekuler, 1999a; Nestares, Navarro, &
Antona, 2003; Parish & Sperling, 1991; Watson &
Ahumada, 2008, 2012; Watson & Fitzhugh, 1989). All
of these are template models, and indeed we are
unaware of any published operational image-based
model of letter identification that is not based on
templates. Our model shares many similarities with
these models, as will be discussed later, but has two
novel features. The first is that the optical component is
based on a new model for the average observer and can
be tuned for a given pupil diameter (Watson, 2013),
which can in turn be computed from the display
conditions (Watson & Yellott, 2012). The second and
more significant feature is eccentricity-dependent spa-

tial filtering and sampling by the mRGC. The local size
and spacing of mRGC are computed from a new
formula (Watson, 2014).

Table 1 lists nine studies in which contrast thresholds
were collected for identification of alphanumeric
symbols as a function of size (Alexander, Xie, &
Derlacki, 1994; Aparicio et al., 2010; Blommaert &
Timmers, 1987; Ginsburg, 1978; Legge, Rubin, &
Luebker, 1987; McAnany & Alexander, 2006; Pelli,
Burns, Farell, & Moore-Page, 2006; Strasburger,
Harvey, & Rentschler, 1991). The final study (Watson)
refers to data collected for this report. The studies
varied in their methods, including exposure duration,
symbol color (black or white), the luminance of the
background L, the font, the number of symbols, the
percentage correct that defined threshold, monocular
or binocular viewing, and the type of display. The
values of these parameters are provided for each study
in Table 1. In all studies, trials were blocked by size,
except in the study by Ginsburg (1978), in which an eye
chart ordered by size was used.

The data from these studies are summarized in
Figure la, plotted as contrast sensitivities (inverse
contrast thresholds). To make the summary data more
legible, we have averaged over observers within each
study, using the method described in Appendix 1. There
is substantial variability between studies, in part
because of the variation in conditions. For example, the
lowest sensitivities are for the briefest durations
(McAnany & Alexander, 2006) whereas the highest are
for the longest durations (Aparicio et al., 2010; Legge et
al., 1987). But despite the variations, a general pattern
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is evident. The dashed gray line in the figure illustrates
the behavior of a simple ideal observer: Sensitivity
increases in proportion to size (the vertical position of
the curve would be determined by the power spectral
density of the noise, but here it is arbitrary). The data,
on the other hand, show an initial slope that is much
greater than 1, followed by a flattening and a decline
beyond about 1 deg.

An alternative representation of these data is in
terms of contrast difference energy. An ideal observer
classifying a set of M images c,, will base its decision on
the vector distance between the test image and each
candidate image in the set. Performance for the set will
depend on the squared distances between members of
the set (Watson & Ahumada, 2008). A summary metric
representing these differences is the average squared
distance between members of the set (Ahumada &
Watson, 2013; Dalimier & Dainty, 2008). This is
equivalent to the average squared distance between
each member and their average (Ahumada & Watson,
2013). Thus, a useful metric for the set is the contrast
difference energy

—~
p—
~—

dx dy di & _
D. = ﬁg llew — el

where ¢ is the average image, dx and dy are the width
and height of a pixel, and df is the duration, or the
integral of the square of the temporal waveform. In this
expression, we have omitted the spatial image coordi-
nates x and y.

Expressing identification thresholds in terms of
contrast difference energy has two advantages: It
automatically takes into account differences in dura-
tion and font weight and styling, and it displays
performance variations relative to an ideal observer. To
transform the data, we first computed the “unit”
contrast difference energy of the set of symbols used in
each study, at a nominal size of 1 deg and a duration
appropriate to the study (see Appendix 2 for details and
Table 1 for values). The contrast difference energy of
each point in Figure la can then be determined by
multiplying the unit contrast difference energy by the
square of the contrast and by the square of the letter
size in deg.

A convenient unit for contrast energy or contrast
difference energy is dBB (Watson & Ahumada, 2005;
Watson & Solomon, 1997). This is given by

dBB(D.) = 10log,, (D) + 60. )

This is a decibel measure, adjusted so that 0 dBB
approximates the minimum visible contrast energy for
a sensitive human observer (Watson, Barlow, &
Robson, 1983). Thresholds can be expressed as dBB,
whereas sensitivity can be expressed as —dBB. The data
in Figure la are presented again in Figure 1b as
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Figure 1. (a) Contrast sensitivities for identification of
alphanumeric symbols as a function of size. Average data from
nine studies are shown. (b) The same data replotted as contrast
difference energies.

contrast difference energy sensitivities in —dBB. Note
that the scatter of the data has been reduced
considerably. With respect to the remaining variation,
we note that even after compensating for duration and
contrast energy, the studies differed in specific observ-
ers, font complexity, percentage correct, number of
symbols, background luminance, pupil diameter, and
contrast polarity. All of these are likely to have some
effect on contrast sensitivity for identification. The
largest variations are for the smallest symbols, where
variations in acuity will have their effect.

Rather than attempting to fit the data for one study
or one observer, we will fit the ensemble of data. In the
case of data collected in our own lab, where all relevant
experimental parameters are known, we will fit results
for individual observers.

For an ideal observer, limited only by the inherent
noise in the signal, contrast energy sensitivity would be
constant when expressed in dBB. Considering the data
in Figure 1b, we note that the sensitivities first rise with
increasing size, reaching a peak at a size around 1/4°,
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Figure 2. Neural Image Classifier. In this example, we show identification of Sloan letters.

and then fall continuously at larger sizes. We will argue
below that the initial rise is due to the escape from
optical and neural blur, whereas the later decline is due
to the decline in resolution of the periphery.

Neural Image Classifier

The model that we will consider to explain these data
is illustrated in Figure 2. It is an extension of a template
model that we have used previously to explain letter
recognition limited by optical and neural factors
(Watson & Ahumada, 2008, 2012). We call it the
Neural Image Classifier (NIC) because it is an optimal
pattern classifier (Duda & Hart, 1973) that operates at
the level of the neural image (Robson, 1980), specifi-
cally the neural image defined by the output of the
mRGC. A summary of notation for the model is
provided in Appendix 9.

A letter of a certain size is presented to the observer.
It passes though optical and neural filters to yield the
neural image. Gaussian white neural noise is added to
produce a noisy neural image, which is then matched in
turn to each of a fixed number of templates. The
templates are the neural images of the candidate letters
of a fixed size. The template with the highest cross-
correlation is reported as the letter identified.

Elsewhere we have developed mathematical tech-
niques to allow efficient Monte Carlo simulation of this
model (Watson & Ahumada, 2008, 2012). In this
report, we describe elaborations of the model to include
(a) an optical filter derived from a population of
observers or from an individual eye, (b) space-variant
filtering by mRGC, (c) space-variant noise that results
from varying density of mRGC receptive fields, and
finally (d) variations in identification efficiency as a
function of target size. The optical and neural

processing are similar to those in a model recently
proposed by Bradley, Abrams, and Geisler (2014),
discussed at greater length in the Discussion section.
We also extend the model to deal with binocular
viewing, in which the two eyes may have different
optical properties. The details of this model and its
extensions will be described in the sections below.
Details of the model implementation are provided in
Appendix 3.

Optical filter

Each image is first blurred by a filter that simulates
the action of the human visual optics. This filter was
computed from a formula recently proposed to describe
the polychromatic (white light) mean optical modula-
tion transfer function (MTF) for a large population of
healthy, well-corrected human eyes (Watson, 2013).
The formula depends on pupil size. The MTF for a
pupil size of 5 mm is shown in Figure 3. When
available, the actual optical filter of a specific individual
eye was used in place of the population average
formula.

This filter does not include subsequent optical
filtering by the waveguide properties of the cone inner
segments. That is instead presumed to be incorporated
in the neural filter, described next.

Neural filter

The next element of the model is a filter that
simulates the linear receptive field of mRGC in the
human retina. However, unlike the standard definition
of the receptive field, this operates on the retinal image,
after blurring by the eye’s optics. The mRGC receptive
field has long been modeled as a difference of
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Figure 3. MTF of the optical filter at pupil diameter 5 mm.

Gaussians (Enroth-Cugell & Robson, 1966; Enroth-
Cugell, Robson, Schweitzer-Tong, & Watson, 1983;
Rodieck, 1965), and we adopt this model as well, based
in part on the fitting exercise described below. To
describe these mechanisms, we introduce the following
Gaussian kernel function,

b = exp () ) 3)

Here, r indicates distance from the receptive field center
in degrees and s is a scale factor, also in degrees. The
function has a normalizing factor to ensure that the
volume under the function is 1, which in turn ensures
that when transformed into a transfer function in the
frequency domain, it will have a peak gain of 1 at 0
cycles/degree.

The mRGC receptive field is then modeled as the
difference between a narrow center Gaussian kernel
and a broader surround Gaussian kernel.

- akgausx(ra SS) (4)

where the parameters are the center scale s., the
surround scale s, and the surround attenuation a.
Because of the normalization of the individual kernels,
a is also the ratio of volumes of center and surround
and, in the frequency domain, the gain at 0 cycles/
degree. We have explored the use of two other kernel
types for the center mechanisms (exp and sech), as
described in Appendix 4. All three kernels worked well,
with Gaussian and sech about equal. Because of
historical precedent and mathematical simplicity, we
have selected the Gaussian.

The preceding equation defines the shape of the
mRGC receptive field at the center of the visual field
(the visual center). At eccentric locations, we assume
that the receptive fields are scaled in proportion to their
spacing. This provides constant mRGC coverage (the

kaGC(V7 Sc, Ss, a) = kgauxs(ra Sc)
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product of receptive field diameter and spacing)
throughout the retina, as found by Dacey (1993). Thus,
at a location x in the visual field, the mRGC receptive
field would be

kmrac (T, Se, Ss, @,X) = Kgquss (r, 5(X)SC)
— akgauss (r, 5(x)ss) (5)

where r now indicates distance from x, and d(x) is the
local scale, which we equate to the mRGC receptive
field spacing at location x, relative to that at the visual
center x = {0,0}. Below, we describe a formula for the
mRGC receptive field spacing as a function of location
in the visual field.

In our model, we consider only the midget retinal
ganglion cells and ignore the other classes of ganglion
cell, notably the parasol cells that contribute to the
magnocellular pathway. We do so because we believe
that the midget cells underlie the spatial pattern vision
for stationary or slowly changing patterns. The midget
cells are the most numerous class: They comprise as
much as 90% foveally and perhaps 40% peripherally of
all ganglion cells (Dacey, 1993; Drasdo, Millican,
Katholi, & Curcio, 2007). This suits them for tasks
demanding high spatial resolution. Furthermore, de-
struction of the midget cells in primates reduces
contrast sensitivity by almost a factor of 10 at both
high and low spatial frequencies, provided that the
temporal frequency is low (Merigan & Eskin, 1986).

We also employ only one size of retinal ganglion cell
at each eccentricity. In empirical measurements of
ganglion cell receptive fields or dendritic fields, there is
some scatter at one eccentricity (Dacey, 1993), but it is
unclear whether this is functional or fortuitous. The
scatter is quite small at small eccentricities, and
essentially zero at the fovea, where each mRGC
(center) is driven by only a single cone.

Local scale

Elsewhere, we have developed a formula to specify
the spacing of mRGC receptive fields as a function of
location in the visual field (Watson, 2014). The formula
is based on anatomical estimates of cone and ganglion
cell densities along the four principal meridians (Curcio
& Allen, 1990; Curcio, Sloan, Kalina, & Hendrickson,
1990), an assumption that each cone drives exactly two
mRGC at the fovea, and estimates of the proportion of
ganglion cells that are midget ganglion cells as a
function of eccentricity (Drasdo et al., 2007). We have
extended the formula to arbitrary retinal locations and
to arbitrary locations in the binocular visual field.
Density computed from the formula is illustrated in
Figure 4a. From a peak density of 29,609 cells degree 2,
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Figure 4. (a) Midget retinal ganglion cell density over the binocular visual field, computed from the formula of Watson (2014). (b)
Midget retinal ganglion cell spacing in the on- or off-center lattice along the horizontal meridian of the binocular visual field. The inset

shows the central 10 degrees.

it declines by more than four log units at an eccentricity
of 90 deg.

The mRGC population consists of overlapping on-
and off-center lattices. The calculated density includes
both lattices. Assuming approximately hexagonal
packing of the cells and equal numbers of on- and off-
center cells, spacing within either the on-center or off-
center lattice will be 2 37V* 472, where d is density in
cells degree 2. This spacing is plotted in Figure 4b for
the horizontal meridian of the binocular visual field.
Because the local scale function d(x) is equal to the
relative spacing, we can write

o(x) = v/d(0)/d(x) (6)

Space-variant filtering

To apply the space-variant filtering due to retinal
ganglion cells, we have implemented and extended the
methods developed by Perry and Geisler (2002). The
essence of their method is that a spatially varying filter
can be approximated by a spatially varying linear
combination of spatially invariant filtered images.
Specifically, we first compute a local scale image of the
same dimensions as the image to be filtered, using the
local scale function §(x) described above in Equation 6.
We then compute a set of filtered images in which the
spatial scale of the filter increases by some factor (e.g.,
2) between each member of the set. For each pixel in
the output image, we first determine the value of the
corresponding pixel in the local scale image. We then
determine the pair of filtered images whose scales
enclose that value. The pixel in the output image is a
linear combination of the corresponding pixels in those
two images, weighted by where the local scale lies in the
interval between their scales.

Our extensions allow an arbitrary filter kernel (e.g.,
exponential and hyperbolic secant) and arbitrary
increments in scale between the spatially invariant
images. We have used this method to effectively
convolve the space-variant receptive field of Equation 5
with each letter image. In general, we have used scale
increments of factors of two.

Noise and efficiency

After optical and neural filtering, the image is
perturbed by additive Gaussian noise. We assume that
at the photopic levels and relatively long durations we
are considering, the noise is dominated by a constant
output noise of the mRGC. If the noise is constant for
each cell, then the variance per unit area is inversely
proportional to the cells per unit area. In that case, the
standard deviation of the equivalent noise in the image
domain will increase in proportion to the spacing of the
mRGC. To simulate this would require the addition of
noise fields in which the standard deviation increased
with eccentricity. To simplify our computations, we
have instead used space-invariant noise and attenuated
the image contrast in proportion to the inverse of
spacing. This approximation relies on the notion that
performance depends essentially on the ratio between
signal and noise. In the remainder of this article, we will
call this eccentric attenuation. It is implemented by
dividing the filtered target image by the local scale
function d(x).

The magnitude of the noise is a model parameter and
is characterized by the power spectral density N degree”
s, given by

N = ¢*dx dydt (7)
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Figure 5. Efficiency versus size. Points are letter identification data (Pelli et al., 2006). The red dashed curve is the relative efficiency of

the model (Equation 8) divided by 10.

where o” is the noise pixel variance, dx and dy are the
width and height of a pixel in degrees, and df is the
duration of the noise sample in seconds.

In the template model, performance is limited by
early filtering, by the power spectral density of the noise
and by the efficiency #. Efficiency is the ratio of the
ideal threshold contrast energy to the actual threshold
contrast energy (Pelli, 1990). A value less than 1
indicates that the calculation performed by the brain is
less than ideal. One source of inefficiency is that the
templates may not be perfect copies of the neural
images. Other possible sources are fixational eye
movements that require the brain to integrate infor-
mation over multiple locations during the exposure
duration, spatial uncertainty, and inefficient combina-
tion of features (Pelli et al., 2006). Because we are not
directly measuring the neural noise, we cannot estimate
efficiency, and our estimate of N is effectively the ratio
N/n. We will use this observation to interpret differ-
ences in estimated N/# to in fact be differences in #.

Pelli has shown that efficiency declines with target
size (Pelli & Farell, 1999). His data are reproduced in
Figure 5, along with a simple function we have used to
approximate this effect. Our function for relative
efficiency as a function of size S has a value of 1 up to
0.5° and then declines with a log-log slope of —0.35, as
shown in Equation 8.

~0.35
n' = Max(l,ﬁ> (8)

Although we have no operational mechanisms for
this variation in efficiency, we include it in our
predictions because our targets vary in size. In our
simulations, we have estimated size by the largest
diameter of the convex hull (Feret diameter) of the
binarized image of the target.

Estimating NIC parameters

The NIC model has four parameters. Three param-
eters are properties of the mRGC: the center scale s,
the surround scale s, and the surround attenuation a
(Equation 4). The fourth parameter is the power
spectral density N. Here, we estimate values for the
parameters by fitting the complete model to a subset of
data from the ModelFest experiment (Carney et al.,
2000; Watson & Ahumada, 2005).

The ModelFest data consist of luminance contrast
thresholds for 43 spatial contrast patterns, each defined
within a 2.13 x 2.13 deg square, presented within a
larger uniform background. The contrast of each
stimulus varied as a Gaussian function of time with a
standard deviation of 1/8 s. When computing contrast
energy, this is equivalent to a duration of 222 ms. We
use these data because they include a range of spatial
frequencies and sizes, they are freely available, and they
were collected with relatively well-defined and modern
methods from a sizable population of observers (16).
Here, we use only the average thresholds for patterns 1
to 14, which consist of Gabor functions of several sizes
and spatial frequencies, and patterns 26 to 29, which
consist of Gaussians of various sizes.

It is important to note that the NIC model can
predict both identification and detection results.
Predictions for two-alternative forced-choice detection
by the NIC model are particularly simple. In the
ModelFest project, thresholds were defined as 84%
correct in the 2AFC task, which corresponds to d’ = 2.
At that threshold, the contrast energy Ey of the neural
image is given by

E, =2N (9)
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Figure 6. Fit of the NIC model to ModelFest data. Parameters
were estimated based on thresholds for images 1 to 14 and 26
to 29.

where N is the noise power spectral density (Ahumada
& Watson, 2013).

We varied the three mRGC parameters of the model
and the quantity N to minimize the RMS error between
the logs of data and predictions. We have estimated the
pupil diameter for the ModelFest experiment to be 5
mm (Appendix 5), so we used that value in the optical
filter.

In Figure 6, we show the best fit at 5S-mm pupil.
Although we fit to only a subset of the patterns (1-14,
26-29), predictions are quite good for the entire set.
The estimated parameters are s, = 1.3 arcmin, s, =9.137
arcmin (sy/s. = 7.031), a = 0.878, and log;oN = —6.44.
The error of fit is RMS =0.295. A range of parameters
give similar results, so alternative values may be
adopted in the future based on additional psycho-
physical or physiological data. In Appendix 4, we
describe supplementary fits with alternative pupil sizes
and center kernels.

Predicting letter identification

We generated predictions for the Sloan font, using
the ModelFest equivalent duration of 222 ms and a 4-
mm pupil. Although we used a 5-mm pupil for the
parameters estimated above, in the letter identification
simulations, we used a pupil diameter of 4 mm, because
that was a better estimate of the pupil size used in the
letter identification studies (Appendix 6). Details of the
implementation of the model, and simulations of letter
identification, are given in Appendix 3.

Because the model consists of a sequence of
processing stages, we can conduct the simulations with
each stage added in turn to illustrate its separate effect.
In Figure 7, we show the ensemble data, along with the
model, as individual stages are added. The first panel
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(a) shows the result with no filtering and homogeneous
sampling. This flat line (a constant contrast energy
threshold) is the behavior of an ideal observer, limited
only by a particular amount of noise. In these
simulations, we set the noise PSD N to the value
estimated from the ModelFest data. This value will be
discussed in greater detail below.

In Figure 7b, we introduce the optical filtering. As
expected, it reduces sensitivities for the smallest letters
but has no effect on very large letters. Introduction of
the neural filtering by the mRGC center (Figure 7c)
causes further attenuation for the small letters, because
it introduces additional blur, but has no effect on the
largest letters, even though the neural blur increases
with eccentricity. The identification of the largest letters
is presumably carried by very low spatial frequencies,
which are not attenuated by the center mechanism.
However, introduction of the surround mechanism
(Figure 7d) does produce substantial attenuation (~10
dBB) for the largest letters. This subtraction of the
surround signal does attenuate the very low frequencies
that underlie identification of the largest letters.

As noted earlier, the effective local noise (power
spectral density, N) in the model is inversely propor-
tional to the density of the mRGC receptive fields. We
simulate this with fixed noise and eccentric attenuation
by the local scale image (see the Noise and efficiency
section). This effect is added in Figure 7e, which has an
even more substantial effect at the larger letter sizes
because they impinge on more sparsely sampled
peripheral retina.

In Figure 7f, we introduce the size-dependent
efficiency of Equation 8. This further attenuates
sensitivity at larger sizes and brings the predictions
close to the data ensemble. The discrepancies that
remain appear to be that predictions are too low at the
smallest letter sizes.

Because of the variability among studies, we have
not attempted to fit precisely any one set of data. But it
is worthwhile considering what changes to the predic-
tions would be produced by changes in the model
parameters. Improvements in optical quality, either
through a smaller pupil or fewer aberrations, would
elevate relative sensitivity to small letters. It is known
that the average ModelFest observer is of somewhat
low acuity. Thus, the estimate of the mRGC center
scale may be too large to simulate “average” behavior.
Like better optical quality, a smaller center scale would
also raise relative sensitivity at small sizes.

In the predictions above, we have estimated param-
eters from detection data obtained from 16 observers in
six different labs (the ModelFest study) and used them
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Figure 7. Letter identification data and model predictions. In each panel, an additional stage is added: (a) ideal observer, (b) optical
filter, (c) mRGC center, (d) mRGC surround, () mRGC noise, (f) size-dependent efficiency.

to predict letter identification data from an ensemble of Given the opportunities for discrepancies based on age,

23 different observers in nine different labs. The procedures, and individuals, the accuracy of the
predictions also made use of average optical transfer predictions is encouraging. However, our conclusions
function derived from 200 eyes, none of which would be more compelling if optical, detection, and

participated in the detection or identification studies. identification data were obtained in a single lab from a
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single set of observers. This was accomplished for three
observers as described in the following sections.
Additional details are provided in Appendix 7.

Observers

Data were collected from three observers, C. V. R.,
P. M. Z., and L. R. W., with ages of 37, 22, and 25
years. Observer P. M. Z. wore glasses, C. V. R. and L.
R. W. did not. C. V. R. is emmetropic, whereas L. R.
W. ordinarily wears glasses with a prescription of OD
0.5,—0.5at 103°, OS 0, —0.75 at 66°. The observers were
naive as to the purposes of the experiment. Experi-
mental protocols were approved by the NASA Human
Research Institutional Review Board. Subjects gave
informed consent before testing. All research con-
formed to the Declaration of Helsinki.

Optical measurements

Wavefront aberrations for a 4-mm pupil were
measured from both eyes of each observer, using the
same optical correction (eyeglasses or not) used in
psychophysical data collection. Details of optical
measurements are provided in Appendix 8. We selected
the 4-mm pupil based on our estimate of pupil diameter
for the conditions of our experiment (Appendix 6). We
zeroed the defocus components, assuming that the
observers were accommodated to our display. The
remaining Zernike coefficients were used to compute
the point spread function (PSF) for each eye of each
observer, as shown in Figure 8. These PSFs were used
to filter the target images separately for the two eyes.

In Figure 9, we have computed the radial MTF for
each eye for each observer. This provides a convenient
summary for the optical performance of each eye and
also allows us to compare the results to the formula
used previously in this article to compute the MTF for
an average observer (Watson, 2013). That formula is
shown by the red curve in Figure 9. For observer C. V.
R., one eye is well below the formula, whereas the other
is slightly above. For observer P. M. Z., both eyes are
near but slightly below the formula. For the observer
who did not wear their usual spectacle correction (L. R.
W.), the MTFs for both eyes are well below the
formula. These results give us additional confidence in
the formula as a useful benchmark and substitute when
optical data are unavailable.

Gabor and Gaussian detection

We measured contrast thresholds for 14 of the
ModelFest stimuli, consisting of 10 Gabor functions of
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constant size (standard deviation of 0.5 deg) and
increasing spatial frequency and one Gaussian of the
same size. These correspond to ModelFest stimuli with
index numbers 1 to 10 and 26 (Watson & Ahumada,
2005). The logic for this selection is that the Gabor
sensitivities characterize the center mechanism, whereas
the Gaussian characterizes the balance. The data for
the three observers are shown in Figure 10.

Estimating NIC parameters

The binocular model was applied to the 14
ModelFest stimuli, and parameters were optimized to
minimize the error between predictions and data for
each observer. Data and model are shown for reach
observer in Figure 10. The estimated parameters are
shown in Table 2.

For two observers, the center scale s, is about 0.4
arcmin. For observer L. R. W, 5. is more than twice as
large. This may be due to residual defocus in this
observer, who did not wear her spectacle correction
during psychophysical testing. It may also be a genuine
variation in center scale, because foveal cone density,
and thus mRGC density, varies substantially among
observers. For example, Curcio et al. (1990) found
foveal cone density differences as large as 3.3, which
would be consistent with spacing and thus scale
differences as large as 1.8. Sekiguchi, Williams, and
Brainard (1993) estimated a neural PSF with a full-
width at half-height of 0.71 arcmin, which corresponds
to a center scale of 0.75 arcmin, close to that of L. R. W.

For technical reasons, we constrained the scale ratio
s/ to below 20. For two observers, this was the value
returned. The value was not well constrained by the
data. All three observers’ estimates of a were a little
greater than 0.9 and of log N were a little less than —6.2.

The most salient differences between the ModelFest
mean observer (MFM) and the three new observers is
in the value of the center scale s.. The MFM value is
about 1.5 times as large as that for L. R. W. (who wore
no glasses) and about 3.3 times as large as for C. V. R.
and P. M. Z. One explanation is that the ModelFest
observers were on average older. It is also likely that
some blur was introduced by the displays used. It has
been previously remarked that the MFM has rather
poor acuity (Ahumada & Scharff, 2007; Watson &
Ahumada, 2008). The other notable difference is the
smaller value of a. This may be the result of
artifactually high ModelFest sensitivity to the Gaussian
stimulus (Ahumada & Scharft, 2007).

Letter identification

Contrast thresholds for letter identification were
collected from the same three observers on the same
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Figure 8. Point spread functions for three observers. The horizontal line in each panel is 5 arcmin in length.

experimental apparatus (Appendix 7). The results are
shown in Figure 10. They are very similar to the
historical data, as may be seen by their mean, plotted as
“Watson” in Figure 1.

Extending the model to two eyes

Our previous simulations treated the observer as
possessing a single cyclopean eye. Here, we have
applied distinct optical filters for each eye to each
stimulus. In addition, we have applied appropriate

monocular mRGC filtering for each eye. This will differ
for the two eyes because of the nasal-temporal
asymmetry of the mRGC density (Curcio & Allen,
1990; Watson, 2014). We have then concatenated the
left- and right-eye images to form a single binocular
neural image. This image now serves as the input to the
classification process. Both templates and sample
images are now binocular. The large literature on
binocular combination is outside the scope of this
article, but we note that this method will yield the
frequently observed quadratic combination of contrasts
(Legge, 1984).



Journal of Vision (2015) 15(2):15, 1-26 Watson & Ahumada 12
1 1 1
0.50 0.50 0.50
5 0.10 s 0.10 5 0.10
O 0] 0]
0.05} 0.05 0.05
CVR PMZ LRW
0.0t 5 10 50 100 0'011 5 10 50 100 O'OWW 5 10 50 100

Spatial frequency (cycles/deQ)

Spatial frequency (cycles/deQ)

Spatial frequency (cycles/deQ)

Figure 9. Radial MTFs for three observers. Green and blue curves are for left and right eyes, respectively. The red curve is the formula

of Watson (2013) for a pupil diameter of 4 mm.

Model predictions

Using the binocular version of the NIC model, and
the parameters estimated from detection of Gabor
functions, we have computed predictions for contrast
thresholds for letter identification as a function of size.
These are shown along with the experimental data in
Figure 11.

For one observer (L. R. W.), the predictions are
quite accurate. Note that there are no free parameters
in this prediction and that the estimates of model
parameters obtained from Gabor thresholds are for
targets about 1° in size (ModelFest stimuli), whereas
the data predicted here extend to letter sizes as small as
1/8° and as large as 8°.

For the other two observers (C. V. R. and P. M. Z.),
the predictions are accurate at large letter sizes but too
low at small letter sizes. For observer C. V. R., at the
smallest letter sizes, the predicted sensitivity is about a
factor of 2 (6 dBB) lower than the measured sensitivity.

For observer P. M. Z., the discrepancy is similar but
smaller. This pattern of results resembles a tendency
evident in Figure 7f; however, predictions here are
based on model estimates obtained for individual
observers. We now consider possible reasons for this
discrepancy for two of the observers.

Efficiency

As noted above, an undetermined parameter in these
simulations is the efficiency of the pattern matching
process. We have effectively combined (multiplicative-
ly) the efficiency into our estimate of noise power N.
One interpretation of the discrepancy in Figure 10 is
that (a) overall efficiency for letter identification is
higher than that for Gabor detection and (b) efficiency
declines more rapidly with eccentricity than our model
assumes. At least the first part of this explanation seems
unlikely, because it has been argued that Gabor
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Figure 10. Contrast sensitivity for three observers and best-fitting versions of the binocular NIC model with measured PSF for each
eye. The Gaussian target (index 26) is plotted as a separate point at the left.
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Observer Se Se/S¢ a logioN RMS
C. V. R. 0.381 20 0.944 —6.23 1.23
P. M. Z. 0.404 20 0.933 —6.25 13
L. R. W. 0.862 8.62 0.921 —6.41 1.18
MFM 1.3 7.03 0.878 —6.44 0.295

Table 2. Estimated NIC model parameters for three observers. Note: For comparison, we also include the ModelFest mean (MFM)

observer estimated earlier.

detection may have an efficiency as high as 0.2 (D. G.
Pelli, personal communication, June 26, 2014), whereas
efficiency for letter identification (for Sloan letters) has
been estimated at about 0.1 (Pelli & Farell, 1999). Pelli
has also shown that efficiency can vary strongly with
the complexity of the targets (Pelli et al., 2006). For this
reason, it should be acknowledged that the near
correspondence of our data and predictions is in part a
coincidence; had we chosen a very different font with a
very different efficiency, the separation between data
and predictions would presumably have been larger.

Position uncertainty

The NIC model assumes that the observer knows the
exact location of the target and can apply each template
at the appropriate position in the neural image. When
the observer is uncertain about the position, efficiency
will decline relative to the ideal classifier (Michel &
Geisler, 2011). This is undoubtedly one reason why
human empirical efficiencies are less than 1. However,
identification may be less uncertain than detection. The
reason is that identification is based on the differences
between targets. The parts they share do not contribute
to the classification. But the parts they share may serve
as a reference to reduce uncertainty.

In this same vein, the contrast threshold for
identification is typically higher than that for detection.
But detection is sufficient to reduce spatial uncertainty.

Thus, at threshold for identification, there may be
sufficient contrast to reduce spatial uncertainty. The
spatial uncertainty explanation for the discrepancy
might also explain why it is diminished at the larger
sizes, where spatial uncertainty plays a smaller role.
Note that spatial uncertainty is one possible source of
inefficiency.

Cortical noise

One aspect of the discrepancy is that empirical
sensitivity declines more rapidly with size than pre-
dicted. Note that in these predictions, we have
estimated parameters by fitting detection data for small
(~1 degree) foveal targets and combined that with a
model for the density of mRGC as a function of
eccentricity to predict identification of large targets,
extending well into the periphery. We have assumed
that the predominant noise is at the level of the neural
image, which means effectively at the output of the
mRGC. Sensitivity declines for large targets in part
because of the effective increase in noise in the
periphery, due to the sparsity of the mRGC (Figure 7e).
If additional noise is introduced at higher (e.g., cortical)
levels, which also show declining density with eccen-
tricity (Schira, Wade, & Tyler, 2007), then a more rapid
decline with eccentricity would be expected.
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Figure 11. Contrast difference energy sensitivities for letter identification as a function of size for three observers. The blue points are

data. The red curve is the prediction of the NIC model.
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Figure 12. Aircraft images used in the identification experiment.

Aliasing in the periphery

Another reason why sensitivity might decline more
rapidly with eccentricity than predicted is that in the
periphery sampling density is well below the optical limit
that would prevent aliasing. Thibos, Still, and Bradley
(1996) have provided compelling empirical evidence for
peripheral aliasing. We hope to include aliasing in a
future version of the NIC model. One puzzle is why
peripheral aliasing does not result in a clear decline in
efficiency with eccentricity (Pelli & Farell, 1999),
although that result extends only to 5 deg eccentricity.

Identification of aircraft

To evaluate the generality of the NIC model, we
have conducted an additional experiment in which our
three observers identified images of aircraft, as shown
in Figure 11. We selected 10 images to match the
number of Sloan letters in the letter identification
experiment. These images differed from the letter
images in several ways. First, they were grayscale
images, rather than binary images, with portions both
brighter than and darker than the background. Second,
they were arguably more complex than the letter
images. Third, they were presumably less familiar to
our observers than the letter images.

The contrast threshold for aircraft identification was
collected from the same three observers who partici-
pated in the letter identification experiment. The images
were created from 3D graphics models using methods
described previously (Watson, Ramirez, & Salud,
2009). The images were equated for size (total number
of nonbackground pixels) and contrast energy. We
used six image sizes from 128 to 2,048 pixels (1.07 to
17.07 deg), in steps of a factor of 2. These limits were
imposed by our display and resolution but still
encompassed five octaves of size. The target occupied
approximately half the width or height of the image, as
shown in Figure 12. Other details of the methods and

procedures were identical to those for the letter
identification experiment (Appendix 7).

Results are shown in Figure 13. Similar to the case of
letter identification, energy sensitivity rises to a peak,
here about 1 degree, and declines at larger sizes. The
results for the three observers are quite similar to one
another. In each panel, we also show the customized
predictions for each observer, based on the optical
parameters of each eye and retinal parameters fit to the
Gabor data. One modification was made to the implicit
model parameters: to match (by eye) the vertical
position of the data, the efficiency was reduced by a
factor of three relative to that for detection of Gabors.

These results show that the NIC model works well for
targets more complex than letter images but also suggests
that absolute predictions will depend on efficiency, which
in turn may depend on the complexity of the targets (Pelli
et al., 2006). It has also been shown that efficiency
depends on the familiarity and degree of learning of the
targets (Dosher & Lu, 1998; Gold, Bennett, & Sekuler,
1999b; Pelli et al., 2006), and our letters are undoubtedly
more familiar than our aircraft images.

Summary

We have described a model of human visual pattern
classification whose primary elements are optical
filtering, filtering by mRGC receptive fields (mRGCY),
variation in mRGCf size and density with eccentricity,
noise at the ganglion cell output, and ideal pattern
classification. In the first part of this article, we
estimated parameters for this model from detection
thresholds for Gabor targets extracted from the
ModelFest data set. We then used the parameterized
model to predict a large collection of historical data sets
of contrast thresholds for letter identification as a
function of size. The predictions were reasonably
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Figure 13. Contrast thresholds for aircraft identification. Target size is defined as half the image width. The red curve is the model

prediction with efficiency one-third that for Gabor detection.

accurate, given the heterogeneity of observers, labs, and
methods.

In the second part of the article, we made new
measurements of both Gabor detection and letter
identification, using a single set of observers, displays,
and methods. Here the predictions were accurate for
one observer but showed modest systematic discrep-
ancies for two other observers. For the latter,
sensitivity was accurately predicted for large letters but
underpredicted for small letters. We have suggested
several possible explanations for this discrepancy.

The NIC model provides a good account of the
general pattern of results for letter identification as a
function of size. Expressed as contrast difference
energy, sensitivity peaks at about 4 degree and falls
steeply at both smaller and larger sizes. The decline at
smaller sizes is due to optical blur and neural blur
contributed by the mRGC layer and depends largely on
properties of that layer in the visual center. The decline
at larger sizes is due primarily to action of the surround
and progressively greater neural blur and noise at
peripheral locations and secondarily to a decline in
efficiency with size.

Contrast sensitivity function

Since the work of Selwyn (1948), Schade (1956),
Lowry and Depalma (1961), and Campbell and
Robson (1968), the contrast sensitivity function has
been a critical measurement of visual sensitivity
(Robson, 1993) and a critical component of models of
early vision. Yet two conceptual problems have
persisted. The first is that there is no consensus
explanation of its form and basis, although even
Selwyn attributed it to “the structure of the retina.”
The second problem is that there is no consistent
empirical definition of the function, because it depends
strongly on the size of the test pattern. Indeed, authors

have devised formulas in which this dependence is
incorporated parametrically (Barten, 1999). The model
we have presented here provides a unifying represen-
tation and explanation for contrast sensitivity. It is no
longer understood as a one-dimensional function,
describing the inverse of the contrast detection thresh-
old as a function of the spatial frequency of a grating
target. It is instead understood as the contrast energy
required to achieve a specified level of classification
performance and is governed primarily by optical blur,
mRGC filtering and the eccentricity-dependent nature
of that filtering, and an internal noise with a particular
power spectral density. From this, one can compute
arbitrary contrast sensitivity functions for gratings of
arbitrary size and location in the visual field.

Beckmann and Legge (2002)

Beckmann and Legge (2002) constructed a particu-
larly detailed simulation of letter identification, in-
cluding optical filtering, filtering by the photoreceptor
aperture, sampling by a photoreceptor lattice, and
template matching. Their model is one of the few to
explicitly include parameters (e.g., cone density, cone
aperture, and optical point spread) that vary with
eccentricity, based on anatomical data. They compared
threshold letter size for human and model at foveal and
peripheral locations (0°, 5°, and 20°). From 0° to 20°,
threshold size increased by a factor of 13.7 for the
human observers, whereas for the model, the factor was
only 1.7. The modest effect of eccentricity on the ideal
is surprising, given that the model cone density varied
by a factor of 667 (and spacing by 25.8) over that range
of eccentricity. But a primary difference from our
model is that they considered only “preneural”
limitations and thus did not include, as we did, mRGC
receptive fields, sampling, and noise.
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Figure 14. Neural images for small and large versions of an aircraft target. Image sizes are 1 deg (left) and 16 deg (right). These are the

approximate limits used in our aircraft experiment (Figure 13).

Identification of small and large patterns

Some studies suggest that small and large patterns
are identified based on different sorts of features
(Majaj, Pelli, Kurshan, and Palomares, 2002; Orug¢ &
Landy, 2009). Both of these studies suggest that large
letters are identified by their edges, whereas small
letters are identified by the coarse strokes. This might
appear inconsistent with our model, in which the neural
image always provides the template. However, the
neural images for small and large letters are quite
different, because of the optical and retinal filtering.
This is illustrated in Figure 14, in which we show the
neural images for the same aircraft target when the
image is either 1° or 16° in width. In the first case, the
neural image is blurred but consists of larges strokes
brighter than the background. In the second, the neural
image consists primarily of edges, which are attenuated
as they extend into the periphery. Thus, the neural
images for small and large targets do in fact agree with
these earlier results.

Equivalent noise

In the NIC model, energy sensitivity declines for
large letters in part because the effective noise increases
in the periphery, due to the greater sparsity of the
mRGCf and the assumption that the predominant
noise is at the output of the ganglion cells. The success
of our predictions encourages this view of visual noise,
at least under the conditions of our experiments, such
as moderate mean luminance and long durations.

By measuring the point at which external noise
begins to have an effect on thresholds, it is possible to
estimate the so-called equivalent noise Nq. This is an
estimate of the internal noise, in units of the external

noise. In Figure 15, we show empirical estimates of N¢q
for letter identification at various sizes (Pelli & Farell,
1999). In the same figure, we show an estimate of
equivalent noise in the NIC model, computed as the
inverse of the mean density over the letter area. The
vertical position is arbitrary. It appears that much,
although not all, of the equivalent noise can be
attributed to the ganglion cells. The portion not
accounted for at the largest sizes may be due to cortical
noise or it may be that peripheral ganglion cells are
inherently noisier than those in the fovea.

In the present version of the NIC model, we have
assigned all of the noise to the output of the ganglion
cells. It is likely that under various conditions, other
sources of noise, including quantum fluctuations in the
signal itself, will dominate or at least contribute. In
principle, this more general model can be accommo-
dated within the framework of the current model.
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Figure 15. Empirical equivalent noise for letter identification
(blue) estimated by Pelli and Farell (1999) and theoretical mRGC
noise derived from mean density (red).
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General model of detection and discrimination

The NIC described in this report is a refinement of
models we have previously presented to account for
visibility of spatial patterns (Watson & Ahumada,
2005). The enhancements provided by this model are
primarily an explicit role for neural noise, the ability to
predict arbitrary classifications (rather than just detec-
tion), and a more realistic explanation for variations
with eccentricity based on the density of mRGC. We
believe that this model could serve as a useful “first
resort” in accounting for a broad class of visual
experiments. In particular, the model provides predic-
tions for visibility of luminance contrast targets of
arbitrary size, shape, and location in the visual field. In
a subsequent report, we will compare these predictions
to published results.

Limitations of the model

It is important to acknowledge the limitations of this
model. The model offers no explanation for the modest
efficiency (~0.1) of even the most efficient classifica-
tions. Likewise, we do not have a satisfying account for
the variations in efficiency between classes of patterns
(e.g., letters vs. aircraft). Complexity has been proposed
as a determinant, but there is no accepted way of
computing visual complexity (Watson, 2012). Promis-
ing results on the question of efficiency have been
obtained recently using models of pattern learning
(Ziskind, Hénaff, LeCun, & Pelli, 2014).

The model is also a “single channel model” and thus
does not account for various phenomena, such as
inefficient summation, often attributed to models that
incorporate spatial frequency channels (Graham &
Nachmias, 1971; Graham, Robson, & Nachmias,
1978). We have avoided the complexity of channels in
an effort to see whether a simple model limited only by
optical and retinal constraints could account for the
essential aspects of the data. A similar model that also
includes channels, but is concerned primarily with
detection, has been proposed recently by Bradley et al.
(2014).

Further, our model does not include masking (Foley,
1994; Watson & Solomon, 1997) but see Bradley et al.
(2014) for an effort to include masking in a similar
model. The NIC model also does not include either
crowding, which will influence identification of pe-
ripheral targets when other patterns are nearby
(Strasburger, Rentschler, & Juttner, 2011; Whitney &
Levi, 2011), or aliasing, which should hamper identi-
fication of peripheral targets relative to predictions
based only on a change of scale (Thibos et al., 1996).
Finally, we note that this model accounts for only the
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simplest sort of visual recognition: classification among
a small set of fixed patterns.

We have gathered data from eight published studies
of contrast thresholds for letter identification as a
function of size.

We have constructed an NIC model that performs
ideal classification of visual targets, limited by optical
blur, retinal filtering, and retinal noise.

The optical component of the model may be supplied
by a recent formula for the mean human optical MTF
for a given pupil diameter (Watson, 2013; Watson &
Yellott, 2012).

The neural component of the model was provided by
a recent formula for the size and spacing of the retinal
ganglion cells as a function of position in the visual
field (Watson, 2014).

When calibrated by Gabor detection data from the
published literature (Watson & Ahumada, 2005), the
NIC model gives a good account of the letter
identification data.

We have also collected new data for three observers.
These include optical measurements, Gabor detection
thresholds, and letter identification thresholds.

When calibrated by the optical measurements and
Gabor detection data for the new observers, the NIC
model gives a good account of the letter identification
data, although some discrepancies are evident.

We have also collected identification thresholds for
aircraft images. These are also predicted well by the
NIC model but with an efficiency about one-third that
for detection of Gabors or identification of letters.

Keywords: contrast, detection, identification, classifi-
cation, letter identification, peripheral vision, contrast
difference energy, noise, efficiency, optics
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Appendix 1: Averaging observer
data

To reduce the clutter of the data across the nine
studies considered, we have averaged over observers
within each study. For some studies, in which the same
set of sizes was used for each observer, this is
straightforward. In the other cases, we have used the
following method.

The data for each observer consist of a set of contrast
thresholds at a set of sizes. We first construct a linear
interpolation between the measured points for each
observer. We then construct a new set of sizes, consisting
of the union of sizes used by all observers but limited to
the range between the largest lower bound and the
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Figure Al. Example of averaging observers. The heavy red
dashed line and points show the averaged data. The thin lines
show the individual observer data.
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smallest upper bound among the several observers. This
eliminates any large or small sizes used with only a
subset of the observers. We then average any groups of
sizes that are separated by less than 1% of the total
range. This merges sizes that are almost the same. The
interpolations for the several observers are then
evaluated at each of the new set of sizes, and the results
are averaged over observers. An example of this process
is shown for one observer in Figure Al. In this example
(Strasburger, Harvey, & Rentschler, 1991), we see that
some data are lost at the largest and smallest sizes.

Appendix 2: Computing contrast
difference energy for data sets

Calculation of contrast difference energy for the
historical data is complicated by ambiguities in font,
symbol set, letter size, monocular versus binocular
viewing, and duration. For each study, we have first
computed a contrast difference energy for the symbols
used in the study at a nominal size of 1 degree. Contrast
energy at other sizes could then be computed by
multiplying by the square of nominal letter size.

Font

Ginsburg used a “Snellen letter chart,” but the chart
shown in his figure 86 includes letters not present in the
Sloan font. The font appears Helvetica-like, however,
so we have assumed a Helvetica bold font. Strasburger
et al. (1991) used numerals in the unknown “zeile” font,
but we obtained digital images of the symbols from the
first author. Blommaert and Timmers (1987) used
lowercase characters of a font called “Eurostile bold
extended,” for which we used the Postscript font
“Eurostile-BoldExtendedTwo.” Pelli and Farell (1999)
do not specify their font, but based on illustrations and
comparison with Pelli et al. (2006), we have assumed a
lowercase Bookman bold font.

Symbol size

In all but three studies, uppercase letters were used,
and letter size was defined as letter height. In
Blommaert and Timmers (1987) and Pelli and Farell
(1999), a full alphabet of lowercase letters was used,
and letter size was defined as “x-height”: the height of

w9

the lowercase letter “x.

Symbol set

In most of the studies, the 10 uppercase letters of the
Sloan font were used (C, D, H, K, N, O, R, S, V,Z). In
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Figure A2. Parameter estimates and error of fits of NIC model to ModelFest data.

Ginsburg (1978), a single eye chart with a particular 12
distinct uppercase letters was evidently used. In
Blommaert and Timmers (1987) and Pelli and Farell
(1999), a full alphabet of lowercase letters was used.
Strasburger et al. (1991) used the 10 numerals from 0 to
9. In each case, the contrast difference energy was
determined for the corresponding set of symbols at a
nominal symbol size of 1 degree.

Duration

Most studies used fixed contrast presentations of
specific finite durations, except for Alexander et al.

(1994), who used a sixth derivative of a Gaussian, with
a peak temporal frequency at 2 Hz. We calculated that
waveform to have an energy equivalent duration of 249
ms. Energy equivalent duration of a time waveform is
defined as the duration of a pulse with the same energy
as the waveform. Data collected for this article used the
ModelFest time course of a Gaussian with a standard
deviation of 1/8 s, which has an energy equivalent
duration of \/7/8 =222 ms. Legge et al. (1987),
Ginsburg (1978), and Aparicio et al. (2010) used an
indefinite duration. We have substituted an effective
duration of 500 ms, because that value brought their
data into rough agreement with the other studies.
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Number of eyes

Two studies used monocular viewing; the others used
binocular viewing (see Table 1). We are uncertain
about the study of Ginsburg (1978) but have assumed
binocular viewing. Because the model used to predict
these data effectively employs a single “cyclopean” eye,
the monocular studies effectively have half as much
contrast energy at a given contrast. We have compen-
sated for this by reducing their computed contrast
difference energy by a factor of 2 (Table 1). Note that
in the model applied to the new data, a binocular model
is used, and this adjustment is not necessary.

Appendix 3: Model implementation

Here we provide some notes on the implementation
of the NIC model. The model was implemented in
Mathematica (Wolfram Research Inc., 2013). We use
the term image to refer to a rectangular array of
numbers, each of which specifies luminance contrast,
and rarget to describe a spatially bounded collection of
nonzero pixels embedded within an image. In most
cases in this article, the target is a letter in a larger
background image.

The model starts with a set of images that contain
the targets to be identified. We typically began with
images of dimensions 1024 x 1024. The images could
be scaled to a smaller size, to accelerate computations.

We also supply an exposure duration. If the stimulus
time waveform is not a pulse, we supply the energy
equivalent duration (the pulse duration yielding the
equivalent energy, equal to the integral of the square of
the waveform). For the ModelFest stimuli, and the
data collected for this report, the waveform was a
Gaussian with a standard deviation of 1/8 sec, and the
energy equivalent duration is /7/8.

We first compute the mean contrast energy of the set,
when each image subtends 2 deg (in most cases, because
the target is half the height of the image, this means the
target height is 1 deg). Contrast energy is the integral of
the square of contrast, integrated over space and time.
For each image, it is the sum of the squares of the
pixels, multiplied by the area of a pixel, and multiplied
by the duration.

We also compute the mean size of the targets, when
each image subtends 2 deg. This was computed using
the Mathematica functions MorphologicalCompo-
nents, DeleteSmallComponents, and ComponentMea-
surements, with option “CaliperLength.” This
effectively measures the largest diameter of the convex
hull (Feret diameter) of the target.

For a given pupil diameter and each of a defined set
of image sizes in degrees, we compute the mean human
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optical filter using the formula of Watson (2013) and
filter the images of the set. We then compute the scale
image, of the same dimensions as the target images, in
which each pixel indicates the local relative spatial scale,
defined as the square root of the density of mRGC
receptive fields, relative to the visual center. This density
is computed using the formula of Watson (2014).

Each image is then subjected to space-variant
filtering, using the receptive field model (Equation 6),
and where 0(x) is provided by the scale image
(Equation 7). Each image is then multiplied by the scale
image. We do this to attenuate the contrast by the
square root of receptive field density, so that spatially
homogeneous noise can be used.

For the mean target size, scaled to degrees, we then
computed the relative efficiency using Equation 8. For
the set of images, we then determine the noise standard
deviation that will yield identification performance at a
target probability correct (we used 0.75). The returned
value can also be regarded as an attenuation of the
image contrast that will yield the target probability
when the standard deviation is 1. Probability correct
was obtained using Monte Carlo simulation of
individual trials, using fast methods described previ-
ously (Watson & Ahumada, 2008, 2012). We used a
search method to locate threshold. At each step of the
search, it conducts 256 trials/image. It first estimates
classification probability at an initial noise guess and, if
necessary, increases the noise by factors of 2 until the
probability is less than 1. It then decreases noise by
factors of 2 until (target probability + chance)/2 < p <
1. It then for eight steps fits a cumulative normal to the
accumulated data and places the next step at the
estimated noise that will yield the target probability.
The returned value is then multiplied by the square root
of the product of relative efficiency and duration and
divided by the value of pixels/degree for that size. This
corresponds to the predicted contrast sensitivity when
the power spectral density is N = 1.

Because in the template model contrast sensitivity is
linear with v/N, predictions for any specified value of N
can be obtained by multiplying the sensitivities by v/N.
On a log sensitivity axis (such as dBB), this consists of a
vertical shift. Thus, we can estimate N by finding the
vertical shift that minimizes the separation between
data and predictions.

Appendix 4: Fits to ModelFest data

Contrast thresholds for 18 ModelFest images (INos.
1-14, 26-29) were fit using the NIC model. These are 10
equal-sized Gabor functions, four Gabors with equal
numbers of cycles, and four Gaussians with varying
sizes (Watson & Ahumada, 2005). We chose these
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pupil (mm) kernel Se Ss S¢/S¢ a N (logio) RMS

2 Exp 1.647 13.09 7.944 0.8253 —6.052 0.2225
3 Exp 1.515 12.09 7.984 0.8296 —6.108 0.2254
4 Exp 1.361 10.39 7.631 0.846 —6.246 0.2484
5 Exp 1.176 9.114 7.747 0.8804 —6.455 0.299

6 Exp 1.176 7.607 6.466 0.9184 —6.779 0.3426
2 Sech 1.324 14.43 10.9 0.8226 —5.983 0.2607
3 Sech 1.214 13.35 11 0.8279 —6.038 0.2454
4 Sech 1.077 11.47 10.66 0.8441 —6.171 0.2571
5 Sech 1.029 8.923 8.668 0.8791 —6.458 0.2949
6 Sech 1 7.639 7.638 0.9169 —6.758 0.3423
2 Gauss 1.581 15.48 9.791 0.8227 —5.938 0.2764
3 Gauss 1.499 13.9 9.273 0.8269 —6.01 0.2529
4 Gauss 1.376 11.54 8.391 0.8431 —6.165 0.2576
5 Gauss 13 9.137 7.031 0.8779 —6.436 0.2954
6 Gauss 1.288 7.66 5.946 0.9163 —6.753 0.3411

Table Al. Parameter estimates and RMS error of fits of NIC model to ModelFest data.

stimuli to provide a small set that spanned a range of
sizes and frequencies. We minimized squared error
between logs of data and predictions, weighted by the
inverse variance of the data at each point. The RMS
error is thus in units of standard deviations of the data.
The fit optimized the four parameters s, s/s., ¢, and N.
We considered three possible forms of center kernel k:
Gaussian (Equation 4) as well as exponential and
hyperbolic secant,

7 r

kexp(r,s) = Z—Szexp<—n§) (A1)
n r

Kseen(r,s) = 102 sech (—n E) . (A2)

We repeated the fit for each type of center kernel. We
also repeated the fit for each of five pupil diameters
between 2 and 6 mm.

The results of all of our fits are shown in Figure A2
and Table A1. In the figure, the center scale for the sech
kernel has been multiplied by 1.25 to show agreement
with the other kernels. We note that as pupil size
increases, the various model parameters vary, because
they are trying to account for a fixed pattern of
performance of the ModelFest observers. The lowest
error is for the Exp kernel with a 2-mm pupil. However,
the ModelFest observers likely had pupils much larger
than that, about 5 mm (Appendix 5). The decline in
center scale with increasing pupil size can be under-
stood as a tradeoff between blur contributed by optical
and neural filters. As the modeled pupil enlarges, the
optical blur increases; to compensate for this, the center
scale decreases, which reduces neural blur. We have
estimated the ModelFest mean observer pupil diameter
to be 5 mm (Appendix 5). At that diameter, the fit of all
three kernels is about equal.

Appendix 5: Pupil diameter in the

ModelFest experiment

The pupil diameters of the observers in the
ModelFest experiment are unknown. Although all
experimenters adopted a common mean luminance of
30 ¢d m~2, no specifications were provided for the
dimensions of the display or of ambient room lighting.
In our own lab, which contributed 3 of the 16
observers, the display subtended 1024 x 768 pixels, at
120 pixels/deg, for an area of about 54.6 deg”. The
average age of the observers was about 39 years. Using
the formula of Watson and Yellott (2012), we compute
a predicted average pupil diameter of about 5.15 mm.

Appendix 6: Pupil diameter in

archival letter identification
experiments

The nine studies summarized in this report did not
generally report pupil diameter. The one exception is
Alexander et al. (1994), who used an artificial pupil of 2
mm. We can roughly estimate the pupil diameters in the
other studies by using a formula relating mean
luminance, display area, and observer age to pupil
diameter (Watson & Yellott, 2012). Assuming a display
area of 100 deg” and an age of 39 years, and applying
the formula to the reported mean luminances, we
obtain pupil diameters of 4.4, 3.99, 3.66, 4.45, 2, 4.57,
4.47, 3.85, and 4.13 mm and an average of about 3.95
mm. Given the many assumptions and uncertainties
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involved, we adopt a pupil diameter of 4 mm for the
simulations of letter identification.

This appendix describes the methods used to collect
detection and identification data in our lab at NASA.

Display

The stimuli were presented on an LCD monitor with
an LED backlight (VIEWPixx Model VPX-VPX-
2000A) with a resolution of 1920 x 1200 pixels and a
frame rate of 120 Hz. The display had a grayscale
resolution of 12 bits (4,096 gray levels). To calibrate the
display, we measured the gamma table: the luminance
produced by each gray level. The gamma table was
used to create a look-up table (LUT) that mapped from
image gray levels to linear luminances with a specified
contrast from —1 to 1. The pixel pitch of the display
was 0.252 mm both horizontally and vertically. The
display was viewed from a distance of 173.3 cm so that
display resolution was 120 pixels/degree. The mean
luminance of the display was 116 cd m 2.

Contrast and time course

For both detection and identification experiments,
the contrast of the images was a Gaussian function of
time, with a standard deviation of 0.125 s and a total
duration of 1 s. This was the temporal contrast
waveform used in the ModelFest experiments (Carney
et al., 1999; Watson & Ahumada, 2005). The Gaussian
could vary in peak amplitude between 0 and 1, thus
determining the peak contrast of the stimulus. The
contrast in each frame was determined by an appro-
priately constructed LUT, and the complete stimulus
was controlled by a sequence of LUTs, presented at the
120-Hz frame rate. In advance of the experiment, we
computed LUT sequences corresponding to Gaussians
with peak contrasts ranging from 0 to —50 dB in steps
of 2 dB.

Gabor and Gaussian stimuli

Gabor stimuli consisted of Gabor functions with a
standard deviation of 30 arcmin and spatial frequencies
of 1.12, 2, 2.83, 4, 5.66, 8, 11.3, 16, 22.6, and 30 cycles/
deg. The Gabor modulation was in the vertical
dimension (the stripes were horizontal). The sinusoid
was in cosine phase at the center of the Gaussian. These
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are ModelFest stimuli Nos. 1 to 10. In addition, we
tested Gaussian stimuli, with standard deviations of 30,
8.43, 2.106, and 1.05 arcmin. These are ModelFest
stimuli Nos. 26 to 29 (Watson & Ahumada, 2005).

Letter and aircraft stimuli

Letter stimuli consisted of a set of 10 images of
letters in the Sloan font. Each original image was 1024
x 1024 pixels in size and was white (gray level 255) on a
gray background (gray level 128). The letter target
within each image was about half the width of the total
image and was centered within each image. We used
image sizes from 32 to 2,048 pixels in steps of a factor
of 2. The upper limit was imposed by our display.

Aircraft stimuli consisted of 10 aircraft images
created from 3D graphics models using methods
described previously (Watson et al., 2009). The targets
were equated for size (total number of nonbackground
pixels) and contrast energy. We used image sizes from
64 to 2,048 pixels in steps of a factor of 2. The target
occupied approximately half the width or height of the
image, as shown in Figure 12.

In the experiment, the original images were scaled to
a specified size using the Mathematica ImageResize
operator with the option Resampling — > “Kaiser.”

General procedure

Observers viewed the display in an otherwise
darkened room. A chin and forehead rest were used for
comfort and to control viewing distance. Contrast
thresholds were determined using a Quest adaptive
procedure (Watson & Pelli, 1983). The Quest procedure
controlled the peak contrast of the Gaussian LUT
sequence. Each presentation interval was accompanied
by an audible tone. Synthetic speech feedback was
provided. Speech was used for observers’ responses.
The “Speakable Items” speech recognition capability of
the Apple OSX 10.8.4 was used to recognize the verbal
responses.

Detection procedure

A two-interval forced-choice procedure was used.
Observer verbal responses were “first” and “second.”
Each threshold was based on a block of 32 trials. Each
observer completed at least three blocks for each target
image. After the completion of a block of trials, the
percentage correct as a function of contrast was fit by a
log Weibull function (guessing parameter = 1/2) to
estimate the contrast yielding 75% correct.
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Identification procedure

In a block of 100 trials, each of the 10 target images
was presented 10 times. The order of the sequence was
randomized. On each presentation, the stimulus was
accompanied by a warning tone. The observer named
the target with a verbal response. Synthesized speech
feedback was provided (“right,” “wrong”). When the
response was wrong, the correct name of the target was
also spoken. For letter identification, we found that the
simple names of the letters were sometimes confused by
the speech recognition software, so we used the
“NATO phonetic alphabet” instead (http://en.
wikipedia.org/wiki/NATO_phonetic_alphabet). For
aircraft identification, we assigned a specific verbal
label to each aircraft (“apache,” “seven forty seven,” “c
seventeen,” “cessna,” “embraer,” “f sixteen”, “fire-
scout,” “reaper,” “d ¢ 3,” “shuttle”). Observers were
trained on large high-contrast targets until their
performance was free of errors.

A single Quest staircase was used for the complete
set of 10 images at one image size. After the completion
of 100 trials, the percentage correct as a function of
contrast was fit by a log Weibull function (guessing
parameter = 1/10) to estimate the contrast yielding 75%
correct. Each observer completed at least three blocks
for each of the seven image sizes.

Appendix 8: Wavefront aberration

measurements

Wavefront aberration data were collected from four
observers (A. B. W.,C. V.R.,P. M. Z., L. R. W.) on
March 20, 2014, at the University of California with
the assistance of Austin Roorda of the Department of
Optometry. All observers except C. V. R. had
eyeglasses. Using a custom-built Shack-Hartmann
wavefront sensor, Dr. Roorda collected several images
for each eye of each observer, both with and without
glasses if they had them. Subsequently, Dr. Roorda
selected the three best images for further processing.
From these, he created Zernike coefficients of several
pupil diameters, extending from the largest possible
and then smaller in integer multiples of 1 mm down to
3 mm. In each case, coefficients were obtained by
fitting the Zernike polynomials to the surface over the
relevant diameter. The result was a collection of 222
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files. Each file included coefficients up to 10th order,
resulting in 66 terms.

We subsequently analyzed the data for a 4-mm pupil,
because that was the presumed diameter during our
psychophysical experiments. We also selected the
condition (glasses or no glasses) used in the experiment.
For observer P. M. Z., this was with glasses; for C. V.
R. and L. R. W, this was without glasses. For each file,
we first deleted zero- and first-order terms, as well as
the defocus term. We then selected the one of the three
replications for each eye that was closest in the mean
squared sense to the average of the three replications.
The result was one set of coefficients for each eye of
each observer.

For each set of coefficients, we computed the
polychromatic PSF and OTF for an image of size 1 deg
and 256 pixels. We used a wavelength spacing of 20 nm,
which previous calculations showed was sufficient
(Watson, 2013). We assumed an equal energy white
spectrum. The resulting PSFs are shown in Figure §,
and the radial MTFs are shown in Figure 9.

Appendix 9: Notation

symbol Definition Unit
k(r, s) normalized kernel of mRGC center or
surround
r radial distance from receptive field deg
center
Se center kernel scale deg
S surround kernel scale deg
a balance, ratio of center and surround
weights
X visual field location (deg, deg)
o(x) mRGC local scale
d(x) mMRGC receptive field density cells deg ™2
M Number of alternatives in classification
N Power Spectral Density of neural noise deg*2 sec™!
D, Contrast difference energy
Ey Contrast energy of neural image
n efficiency
n’ relative efficiency

Table A2. Notation used in this report.


http://en.wikipedia.org/wiki/NATO_phonetic_alphabet
http://en.wikipedia.org/wiki/NATO_phonetic_alphabet
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