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ABSTRACT 

In this paper, we argue that existing languages for 
representing routine cognitive tasks (such as GOMS, UAN, 
and PDL) can fail either because they demand that task 
competence is described using serial position to determine 
temporal order (and they are therefore overly restrictive) or 
because they demand that partial orderings are specified with 
temporal dependencies and other logical relationships (and 
they are therefore under-constrained). We propose a novel 
task description language, called Information-Requirement 
Grammar (IRG), which is motivated by a theory of how 
higher-level task performance is constrained by the 
information requirements and resource demands of lower-
level tasks. We demonstrate the use of IRG and show how it 
replaces serial ordering and temporal dependencies with 
resource-bound information cascades between architectural 
information processes.  

Introduction 
We propose a theory of competence for tasks that is called 
Information-Requirements Grammar (IRG). It is motivated 
by the assumption that constraints on tasks derive from 
their need for information. The assumption is not novel. In 
particular, Gray, John and Atwood (1993) emphasized the 
importance of information flow between processes in 
describing complex behaviors. What is novel are the 
implications, described below, that we draw from it. We 
argue that application of the theory to the modeling of task 
knowledge can solve two serious problems with established 
approaches, particularly GOMS (Card, Moran & Newell, 
1983), but also UAN (Hartson & Gray, 1992), PDL (Freed, 
Matessa, Remington &, Vera, 2003) and similar 
scheduling-based languages.  

Cognitive Modeling Approaches 
Since Card, et al. (1983) there have been numerous 
advances in task knowledge modeling techniques. For our 
purposes, we broadly categorize these into two approaches 

on the basis of how they determine temporal ordering: (1) 
extensions and uses of techniques such as GOMS (Card, et 
al., 1983) that use the serial position of operators in the task 
description to determine temporal order; and (2) techniques 
such as PDL and UAN that specify temporal dependencies 
between operators.  

In this paper, we focus on a payment inquiry (PI) task 
which involves a customer contacting a call center to check 
whether his/her previous payment has been credited to an 
account (the task is similar to that studied in the seminal 
work by Gray, et al., 1993). To answer this inquiry the call 
center agent must find the customer’s record in the system 
and then view the key details of the most recent payment. 
For this type of task, both categories of cognitive modeling 
approach have problems.  

First, let us examine an example GOMS method rule for 
part of the PI task, namely entering the customer’s postcode 
as part of the search criteria to find the customer’s account: 

Enter postcode  
 Step 1: request postcode,  
 Step 2: listen for postcode, 
 Step 3: select postcode field, 
 Step 4: type postcode.   (1) 
 
This method specifies that to achieve the ‘enter postcode’ 
goal, steps 1 to 4 must be conducted in order. The serial 
position of step 3 (between step 2 and 4) in the method 
description determines its temporal ordering in a behavior 
prediction. However, often the environment does not 
impose strict ordering constraints between components of 
the method. For example, with most devices step 3, select 
field, could in fact be the very first step in the “enter” 
method, it could also be executed in parallel with steps 1 
and 2. The problem, as observed by Gray, et al. (1993), is 
that a GOMS method does not specify which components 
can be reordered; rather there is a universal assumption that 
temporal ordering will reflect serial position in the method.  



Methods, such as ACT-SIMPLE (Salvucci & Lee, 2003), 
GOMSL (Kieras, 1999) and G2A (St. Amant & Ritter, 
2004), that rely on decomposing task descriptions into 
sequences of operators all suffer from this same problem of 
over-constraining the temporal order. They have limited or 
no scope for parallelization of operators.  

In contrast, CPM-GOMS was developed specifically to 
model the information flow between tasks and the 
parallelization of activities (Gray, et al., 1993). Using CPM-
GOMS some aspects of a theory of information flow could 
be imposed with temporal dependencies. However, the 
specification of the relationships between processes in 
terms of dependencies leads to under-constraint. Important 
aspects of the theory on which CPM-GOMS was based 
remained implicit.  In particular,  

1. The maximum duration of the gap between two 
processes (e.g., working memory bounds) cannot be 
specified. 

2. It is difficult to specify constraints on whether a 
process can be scheduled between two other processes.  

Vera, et al. (2004), describe how these problems can result 
in undesired processing schedules, with operators occurring 
in orders which are inconsistent with the theory, potentially 
leading to under-prediction of the task performance time. 
Similar approaches, such as UAN and ConcurTaskTrees 
(Paterno, Mancini, & Meniconi, 1997), suffer from similar 
problems. They under-constrain the temporal order. While 
constraints can be added to a particular model by the 
theorist, there is not a theory embedded within the structure 
of the language of the constraints imposed by the human 
cognitive architecture. 

Information-Requirements Grammar 
IRG is a grammar notation for representing hypotheses 
concerning competence for tasks. It is based on the 
following theoretical commitments:  

• The execution of tasks is constrained by their information 
and control requirements. 

• The performance of the component processes of a task 
and the transmission of information between them require 
resources and are subject to resource constraints.  

The expansion of an IRG maps a task description into a set 
of processes and a set of constraints on inter-process 
information flow. Together, the processes and information 
flow constraints form a model of the processing involved 
when a person performs the task. 
Before introducing the structure of IRG rules, we first 
describe what we mean by information flow constraints.  

Information and Control Requirements 
Tasks receive, transform, and transmit information. The 
availability of information constrains how and when a task 
can be conducted. For example, a call center agent cannot 
enter a value (such as the customer’s address) into the 
system until he/she hears that address from the customer. In 
this case, typing the value is constrained by when it is 
heard. As a result, it is the flow of information that 
determines the temporal order of tasks.  

Control constraints derive from the task environment. For 
example, a user may choose to delay typing into a field on 
the screen until he/she has observed that the cursor is in that 
field. In this case, typing the value is constrained by 
observation of the cursor state. Control constraints can be 
thought of as a special case of information constraints: a 
signal that some process has completed, or perhaps started, 
is required before another can proceed.  

Competence in this view is knowledge of information and 
control requirements.  This is a somewhat restricted view of 
competence, as it does not concern the content of the 
information transmitted.  The point is that what it does 
include is just what is needed to figure out how to schedule 
processes given limited resources. 

Resources and Resource Constraints 
The transmission of information between processes imposes 
resource demands. Information can be transmitted from one 
process to another only if there is a physical substrate with 
which to carry and perhaps store that information. We 
assume that information transmission must be either 
between simultaneously instantiated processes or mediated 
by a buffer. In both cases we say that information is 
cascaded (a concept introduced by McClelland (1979) to 
explain speed-accuracy tradeoffs). 

Our version of cascade theory commits to the following 
assumptions: Processes must overlap in time so as to 
transfer information. A process is executed by a processor 
(also known as a resource; a candidate set was proposed by 
Card, et al., 1983). A process has a minimum duration 
before it starts transmitting (incomplete) information and a 
duration by which time it is transmitting complete 
information. It also has a maximum duration, by which time 
it is no longer executing and its results are not available. 

 
Figure 1: Cascaded information processes. 

 



Some function relates the accuracy of information produced 
to the duration since the process started (Howes, Vera,  
Lewis & McCurdy, 2004).  

The constraint imposed on process start times and durations 
by a cascade that transfers information from process i to 
process j, where i and j have start times Si, Sj and end times 
Ei, Ej, can be defined as a pair of inequalities: 

 Si < Sj < Ei    (2) 

These constraints assert the need for overlap between i and j 
but without representing the speed-accuracy tradeoff 
functions. (The tradeoff functions are beyond the scope of 
the current paper.) Figure 1 illustrates two models that are 
consistent with this constraint. In Figure 1a, a cognitive init 
must overlap in time with the motor process that it causes. 
The period of time during which information flows from 
the init to the click is illustrated with a faded connector, 
representing the cascade, between them. In Figure 1b, the 
flow of information between the init and the click is 
mediated by a buffer, but the relationships between the init 
and the buffer and the buffer and the click are each 
consistent with the cascade assumption. 

Importantly, the relationship defined by a cascade is the 
only temporal constraint between processes permitted in 
IRG. 

IRG Rules for Primitive Architectural Operators 
We refer to the buffer in Figure 1b as a transmit process. 
Together the three processes (init, transmit, and click) form 
a simple example of what we call Architectural Process 
Cascades (APCs).  APCs model the fixed and immutable 
functionality provided by the cognitive architecture. APCs 
can be defined with IRG rules. Figure 1b is defined by the 
IRG rule: 

 click mouse 
   init   - INIT, 
       transmit on INIT - TRANSMIT, 
       click on TRANSMIT.   (3) 
 
The rule states that: the task “click mouse” can be expanded 
into three processes. Uppercase words are variables. 
Variables after a minus sign are bound to the identifier of 
the process. A right-hand element of an IRG rule that refers 
to the identifier of another process receives information 

effect ACTION after E1 and E2  : CTRL EFFECT 
         init ACTION after E1 and E2            - INIT, 
     transmit INIT in mb                      - TRANSMIT, 
    do ACTION on TRANSMIT               - MOTOR, 
    hold MOTOR in mb                 - CTRL, 
    display ACTION on MOTOR          - EFFECT. 
 
check ATTENDED to FIELD : RESULT 
      verify ATTENDED is FIELD            - VERIFIED, 
     hold VERIFIED in wm 1             - RESULT. 
 
move_eyes_to FIELD  : FIX 
      init eyes                                         - INIT, 
     do shift_eyes on INIT                     - SHIFT, 
     hold SHIFT in vision                              - FIX. 
 
say STRING : MOTOR RESPONSE 
    init say         - INIT, 
 transmit INIT in mb        - TRANSMIT, 
 say1 STRING on TRANSMIT       - MOTOR, 
 verbal response on MOTOR       - RESPONSE. 
 
hear RESPONSE : RESULT 
      attend auditory        - ATTEND, 
     transmit ATTEND in ab               - TRANSMIT, 
     perceive auditory RESPONSE on TRANSMIT      - PERCEIVED, 
     hold PERCEIVED in ab       - RESULT. 
 
see EVENT at PLACE : RESULT 
            attend visual PLACE         - ATTEND, 
     transmit ATTEND in vb            - TRANSMIT, 
     perceive visual EVENT on TRANSMIT       - PERCEIVED, 
     hold PERCEIVED in vb       - RESULT. 
 
see TARGET at fixation FX  : RESULT 
           attend visual TARGET                      - ATTEND, 
    transmit ATTEND in vb           - TRANSMIT, 
     perceive visual FX TARGET on TRANSMIT       - PERCEIVED, 
     hold PERCEIVED in vb       - RESULT. 
 

Figure 2: IRG specification of mappings between Abstract Functional Operators and architectural processes. 



from that process. Rule (3) states that transmit requires 
information from INIT and that click requires information 
from TRANSMIT.  

For every information flow defined in an IRG rule, the IRG 
interpreter generates constraints of the form specified in (2). 
In the case of click mouse, the following constraints are 
generated: 

 Sinit < Stransmit < Einit 

 Stransmit < Sclick < Etransmit 

These constraints determined the temporal relationships 
between the processes. In contrast, the fact that init, 
transmit, and click are ordered in the “click mouse” rule has 
no consequence for their temporal relationships. In fact the 
ordering in the rule could be different, perhaps [transmit, 
init, click] without consequence for the constraints 
generated from rule expansion (cf. GOMS). 

Figure 2 presents seven rules describing a set of APCs for 
simple motor and perceptual operators, e.g. seeing, hearing, 
pressing a mouse button. Each APC (left-hand side of a 
rule) maps into a set of information-flow-constrained 
architectural processes (right-hand side). The processing 
commitments made in these rules concern hypotheses about 
the nature of the human cognitive architecture.  

The specification of each APC includes not only the details 
of the information flows within the operator, as described 
for click-mouse above, but also the information flows into 
and out of the structure. These information flows are 

represented in the parameters on the left-hand side of each 
rule. For example, the second rule “check ATTENDED to 
FIELD : RESULT” in Figure 2 takes information from an 
attentional process, bound to ATTENDED, and returns 
RESULT, which is the identifier of the “hold verified in 
wm” process. 

The rules in Figure 2 are not pseudo-code; they are 
presented in the exact syntactic form required for input to a 
tool, described below, that given an IRG expands task 
descriptions into a set of processes representing cognitive, 
perceptual and motor behavior. 

Task-Level Rules 
In the previous section, we illustrated how IRG can be used 
to represent a theory of the temporal properties of a human 
cognitive architecture. That in and of itself is a potentially 
powerful tool, but here it is a precursor to our primary goal 
in this paper which is to demonstrate how to specify 
theories of the knowledge required to perform particular 
tasks and to thereby show how IRG solves the problems 
identified with existing task description languages. 

Figure 3 shows the major part of the IRG specification of 
the PI task. The rules in the figure are hierarchically 
structured, such that method 1 describes the overall task, 
which decomposes into the lower-level methods 
represented by subsequent rules. The decomposition of the 
task continues until all tasks have been expanded into the 

1. verify payment 
 click Convergys system - LAUNCH, 

request lastname and enter into name field after LAUNCH - REQUEST(1), 
request zipcode and enter into zip field after REQUEST(1) - REQUEST(2), 
click search button after REQUEST(2) - SEARCH, 
confirm customer record after SEARCH - CONFIRMATION, 
confirm payment after CONFIRMATION.  
 

2. request STRING and enter into FIELD after EVENT  - RESULT   
 speak STRING and get INFO, 

select FIELD and enter INFO after EVENT  - RESULT. 
 
3. speak STRING and get INFO 

 say STRING - CTRL RESPONSE, 
hear RESPONSE - INFO. 

 
4. select FIELD and enter INFO after EVENT  - RESULT  

 move_click_on FIELD after EVENT  : CLICK EFFECT, 
see EFFECT at FIELD - SEEN, 
type INFO after SEEN - RESULT. 

 
5. move_click_on FIELD after EVENT  - CLICK EFFECT 

 effect move after EVENT and nil    - MOVED CTRL, 
move_eyes_to FIELD - FX, 
see FIELD at fixation FX               - ATTENDED, 
check ATTENDED to FIELD       - VERIFIED, 
effect click after MOVED and VERIFIED - CLICK EFFECT. 
 

Figure 3: IRG rules representing the strategies required for the PI verify payment task. The rules for click and confirm, 
called in rule 1, are not listed. (Variables are capitalized, method names are in bold, constants in lowercase, normal font. 

Variables after the symbol ‘-‘ are bound within the rule and returned as results.) 

 



cognitive, perceptual or motor processes and their cascaded 
information flows that are presented in Figure 2. 

The methods in Figure 3 illustrate how higher-order tasks 
can be composed from subtasks, which are eventually 
composed of the APCs provided by the cognitive 
architecture (see Figure 2).  At all levels, information flows 
between tasks are defined using the parameter passing 
mechanism described in the previous section.  

Generating a Prediction with Constraint 
Satisfaction 

Using a tool called CORE (Howes et al., 2004; Vera et al., 
2004; Lewis et al., 2004), temporal constraints generated 
through expansion of the IRG are posted to a Sicstus Prolog 
CLP FD (Constraint Logic Programming for Finite 
Domains) constraint store. They are elaborated with 

constraints that determine typical durations for each process 
(e.g. as articulated in Card et al.’s Model Human Processor 
(MHP)). Constraint satisfaction is used to determine a 
prediction of the optimal adaptation to the task constraints. 
The output from CORE is a behavior graph, representing 
the start times and durations of each process (e.g. Figure 4). 
In Figure 4, each row represents a processor and each box 
represents a process. The names of each processor are 
shown on the left. The figure illustrates two key aspects of 
IRG.  

1. Cascaded information flows permit theory-congruent 
concurrency. Serial order in IRG rules does not impose a 
temporal order. Although control constraints specified at 
the higher levels of IRG task descriptions (e.g., Figure 3) 
may look as though they define a strict linear sequence (as 
GOMS methods do), this is in fact not the case. For 
example, in Figure 4, it can be seen that the request for the 

 
Figure 4: Part of the behaviour graph for the IRG model of the PI task, showing (from left to right) moving to and 

clicking on the name field (u22, u40), the request for the customer’s name (u10), perceiving the feedback that the cursor 
is in the name field (u46), typing the name (u51). Many of the processes are conducted concurrently. 

 



customer’s last name (u8 & u10) is predicted to occur 
concurrently with the movement of the mouse to the name 
field (u20, u22, u38 & u40). The IRG specification ensures 
that process scheduling is consistent with information 
requirements but does not prevent the concurrent 
scheduling of what are otherwise autonomous processes.  

2. Cascaded information flows prevent theory-incongruent 
interleaving. For example, in Figure 4 there are five init 
processes each with a corresponding motor process. The 
motor processes are predicted to be scheduled in the same 
order as the cognitive init processes. The init processes 
transmit information to the motor processor, through a 
cascaded buffer. The fact that the buffer resource can 
compute only one process at a time, combined with the 
need to receive and send information, ensures the consistent 
ordering of the cognitive and motor processes. In contrast, 
with a language that requires temporal dependencies 
between each init and its corresponding motor process no 
systematic relationship between the order of the inits and 
the order of the motor processes is imposed. 

Discussion 
We have described a theory, called IRG, of the structure of 
competence for interactive task performance. The theory 
addresses shortcomings with existing task description 
languages, which are either too restrictive (e.g., GOMS) or 
too permissive (e.g., UAN, CPM-GOMS, PDL). IRG 
demands specification of the information requirements of 
each task in the hierarchy. Expansion of the hierarchy and 
deduction of the optimal strategy given the cascade-based 
constraints results in the generation of a prediction of the 
time-course of interactive performance. 

A second contribution of the paper is that, in addition to 
showing how IRG can be used to express theories of task 
competence, we have also shown how it can be used to 
express theories of the processing capabilities of a cognitive 
architecture (APCs). One might well ask why we chose to 
do this: Why did we describe how APCs, such as click 
mouse, map into primitive processes?  Could we not have 
treated APCs as black boxes and pieced these together in 
the fashion of GOMS?  The answer is no; doing so would 
miss a point fundamental to the approach: It is precisely the 
fact that we describe the basic resource and information 
requirements of the elemental architectural processes that 
provides the required constraint on performance. There is 
no avoiding this level of detail when parallelism matters. 

One response to our critique of UAN and PDL is that they 
offer a set of mechanisms sufficiently rich as to enable the 
expression of whatever a theorist requires.  Indeed 
successful efforts have been made in this direction (Vera, 
John, Remington, Matessa, Freed, in press). It may even be 
possible to capture the inequalities that represent cascaded 
information flows. However, such a response would miss 
the point that what cognitive science needs is computational 
expressions of theories that are not sufficiently rich to 

express whatever a modeler wants but rather sufficiently 
constrained as to make commitments to the nature of the 
underlying human information processing system.  
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