
Information-Requirements Grammar: A Theory of
the Structure of Competence for Interaction

Andrew Howes (HowesA@Cardiff.ac.uk)

School of Psychology, Cardiff University, Cardiff, Wales, CF10 3AT, UK

Richard L. Lewis (rickl@umich.edu)
Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1109

Alonso Vera (avera@mail.arc.nasa.gov)

Carnegie Mellon University and NASA Ames Research Center, MS 262-3 Moffet Field, CA 9403

Juliet Richardson (Juliet.Richardson@convergys.com)
Convergys, Westbrook Centre, Milton Road, Cambridge, UK

ABSTRACT

In this paper, we argue that existing languages for
representing routine cognitive tasks (such as GOMS, UAN,
and PDL) can fail either because they demand that task
competence is described using serial position to determine
temporal order (and they are therefore overly restrictive) or
because they demand that partial orderings are specified with
temporal dependencies and other logical relationships (and
they are therefore under-constrained). We propose a novel
task description language, called Information-Requirement
Grammar (IRG), which is motivated by a theory of how
higher-level task performance is constrained by the
information requirements and resource demands of lower-
level tasks. We demonstrate the use of IRG and show how it
replaces serial ordering and temporal dependencies with
resource-bound information cascades between architectural
information processes.

Introduction
We propose a theory of competence for tasks that is called
Information-Requirements Grammar (IRG). It is motivated
by the assumption that constraints on tasks derive from
their need for information. The assumption is not novel. In
particular, Gray, John and Atwood (1993) emphasized the
importance of information flow between processes in
describing complex behaviors. What is novel are the
implications, described below, that we draw from it. We
argue that application of the theory to the modeling of task
knowledge can solve two serious problems with established
approaches, particularly GOMS (Card, Moran & Newell,
1983), but also UAN (Hartson & Gray, 1992), PDL (Freed,
Matessa, Remington &, Vera, 2003) and similar
scheduling-based languages.

Cognitive Modeling Approaches
Since Card, et al. (1983) there have been numerous
advances in task knowledge modeling techniques. For our
purposes, we broadly categorize these into two approaches

on the basis of how they determine temporal ordering: (1)
extensions and uses of techniques such as GOMS (Card, et
al., 1983) that use the serial position of operators in the task
description to determine temporal order; and (2) techniques
such as PDL and UAN that specify temporal dependencies
between operators.

In this paper, we focus on a payment inquiry (PI) task
which involves a customer contacting a call center to check
whether his/her previous payment has been credited to an
account (the task is similar to that studied in the seminal
work by Gray, et al., 1993). To answer this inquiry the call
center agent must find the customer’s record in the system
and then view the key details of the most recent payment.
For this type of task, both categories of cognitive modeling
approach have problems.

First, let us examine an example GOMS method rule for
part of the PI task, namely entering the customer’s postcode
as part of the search criteria to find the customer’s account:

Enter postcode 
 Step 1: request postcode,
 Step 2: listen for postcode,
 Step 3: select postcode field,
 Step 4: type postcode. (1)

This method specifies that to achieve the ‘enter postcode’
goal, steps 1 to 4 must be conducted in order. The serial
position of step 3 (between step 2 and 4) in the method
description determines its temporal ordering in a behavior
prediction. However, often the environment does not
impose strict ordering constraints between components of
the method. For example, with most devices step 3, select
field, could in fact be the very first step in the “enter”
method, it could also be executed in parallel with steps 1
and 2. The problem, as observed by Gray, et al. (1993), is
that a GOMS method does not specify which components
can be reordered; rather there is a universal assumption that
temporal ordering will reflect serial position in the method.

Methods, such as ACT-SIMPLE (Salvucci & Lee, 2003),
GOMSL (Kieras, 1999) and G2A (St. Amant & Ritter,
2004), that rely on decomposing task descriptions into
sequences of operators all suffer from this same problem of
over-constraining the temporal order. They have limited or
no scope for parallelization of operators.

In contrast, CPM-GOMS was developed specifically to
model the information flow between tasks and the
parallelization of activities (Gray, et al., 1993). Using CPM-
GOMS some aspects of a theory of information flow could
be imposed with temporal dependencies. However, the
specification of the relationships between processes in
terms of dependencies leads to under-constraint. Important
aspects of the theory on which CPM-GOMS was based
remained implicit. In particular,

1. The maximum duration of the gap between two
processes (e.g., working memory bounds) cannot be
specified.

2. It is difficult to specify constraints on whether a
process can be scheduled between two other processes.

Vera, et al. (2004), describe how these problems can result
in undesired processing schedules, with operators occurring
in orders which are inconsistent with the theory, potentially
leading to under-prediction of the task performance time.
Similar approaches, such as UAN and ConcurTaskTrees
(Paterno, Mancini, & Meniconi, 1997), suffer from similar
problems. They under-constrain the temporal order. While
constraints can be added to a particular model by the
theorist, there is not a theory embedded within the structure
of the language of the constraints imposed by the human
cognitive architecture.

Information-Requirements Grammar
IRG is a grammar notation for representing hypotheses
concerning competence for tasks. It is based on the
following theoretical commitments:

• The execution of tasks is constrained by their information
and control requirements.

• The performance of the component processes of a task
and the transmission of information between them require
resources and are subject to resource constraints.

The expansion of an IRG maps a task description into a set
of processes and a set of constraints on inter-process
information flow. Together, the processes and information
flow constraints form a model of the processing involved
when a person performs the task.
Before introducing the structure of IRG rules, we first
describe what we mean by information flow constraints.

Information and Control Requirements
Tasks receive, transform, and transmit information. The
availability of information constrains how and when a task
can be conducted. For example, a call center agent cannot
enter a value (such as the customer’s address) into the
system until he/she hears that address from the customer. In
this case, typing the value is constrained by when it is
heard. As a result, it is the flow of information that
determines the temporal order of tasks.

Control constraints derive from the task environment. For
example, a user may choose to delay typing into a field on
the screen until he/she has observed that the cursor is in that
field. In this case, typing the value is constrained by
observation of the cursor state. Control constraints can be
thought of as a special case of information constraints: a
signal that some process has completed, or perhaps started,
is required before another can proceed.

Competence in this view is knowledge of information and
control requirements. This is a somewhat restricted view of
competence, as it does not concern the content of the
information transmitted. The point is that what it does
include is just what is needed to figure out how to schedule
processes given limited resources.

Resources and Resource Constraints
The transmission of information between processes imposes
resource demands. Information can be transmitted from one
process to another only if there is a physical substrate with
which to carry and perhaps store that information. We
assume that information transmission must be either
between simultaneously instantiated processes or mediated
by a buffer. In both cases we say that information is
cascaded (a concept introduced by McClelland (1979) to
explain speed-accuracy tradeoffs).

Our version of cascade theory commits to the following
assumptions: Processes must overlap in time so as to
transfer information. A process is executed by a processor
(also known as a resource; a candidate set was proposed by
Card, et al., 1983). A process has a minimum duration
before it starts transmitting (incomplete) information and a
duration by which time it is transmitting complete
information. It also has a maximum duration, by which time
it is no longer executing and its results are not available.

Figure 1: Cascaded information processes.

Some function relates the accuracy of information produced
to the duration since the process started (Howes, Vera,
Lewis & McCurdy, 2004).

The constraint imposed on process start times and durations
by a cascade that transfers information from process i to
process j, where i and j have start times Si, Sj and end times
Ei, Ej, can be defined as a pair of inequalities:

 Si < Sj < Ei (2)

These constraints assert the need for overlap between i and j
but without representing the speed-accuracy tradeoff
functions. (The tradeoff functions are beyond the scope of
the current paper.) Figure 1 illustrates two models that are
consistent with this constraint. In Figure 1a, a cognitive init
must overlap in time with the motor process that it causes.
The period of time during which information flows from
the init to the click is illustrated with a faded connector,
representing the cascade, between them. In Figure 1b, the
flow of information between the init and the click is
mediated by a buffer, but the relationships between the init
and the buffer and the buffer and the click are each
consistent with the cascade assumption.

Importantly, the relationship defined by a cascade is the
only temporal constraint between processes permitted in
IRG.

IRG Rules for Primitive Architectural Operators
We refer to the buffer in Figure 1b as a transmit process.
Together the three processes (init, transmit, and click) form
a simple example of what we call Architectural Process
Cascades (APCs). APCs model the fixed and immutable
functionality provided by the cognitive architecture. APCs
can be defined with IRG rules. Figure 1b is defined by the
IRG rule:

 click mouse
  init - INIT,
 transmit on INIT - TRANSMIT,
 click on TRANSMIT. (3)

The rule states that: the task “click mouse” can be expanded
into three processes. Uppercase words are variables.
Variables after a minus sign are bound to the identifier of
the process. A right-hand element of an IRG rule that refers
to the identifier of another process receives information

effect ACTION after E1 and E2 : CTRL EFFECT
  init ACTION after E1 and E2 - INIT,
 transmit INIT in mb - TRANSMIT,
 do ACTION on TRANSMIT - MOTOR,
 hold MOTOR in mb - CTRL,
 display ACTION on MOTOR - EFFECT.

check ATTENDED to FIELD : RESULT
  verify ATTENDED is FIELD - VERIFIED,
 hold VERIFIED in wm 1 - RESULT.

move_eyes_to FIELD : FIX
  init eyes - INIT,
 do shift_eyes on INIT - SHIFT,
 hold SHIFT in vision - FIX.

say STRING : MOTOR RESPONSE
  init say - INIT,
 transmit INIT in mb - TRANSMIT,
 say1 STRING on TRANSMIT - MOTOR,
 verbal response on MOTOR - RESPONSE.

hear RESPONSE : RESULT
  attend auditory - ATTEND,
 transmit ATTEND in ab - TRANSMIT,
 perceive auditory RESPONSE on TRANSMIT - PERCEIVED,
 hold PERCEIVED in ab - RESULT.

see EVENT at PLACE : RESULT
  attend visual PLACE - ATTEND,
 transmit ATTEND in vb - TRANSMIT,
 perceive visual EVENT on TRANSMIT - PERCEIVED,
 hold PERCEIVED in vb - RESULT.

see TARGET at fixation FX : RESULT
  attend visual TARGET - ATTEND,
 transmit ATTEND in vb - TRANSMIT,
 perceive visual FX TARGET on TRANSMIT - PERCEIVED,
 hold PERCEIVED in vb - RESULT.

Figure 2: IRG specification of mappings between Abstract Functional Operators and architectural processes.

from that process. Rule (3) states that transmit requires
information from INIT and that click requires information
from TRANSMIT.

For every information flow defined in an IRG rule, the IRG
interpreter generates constraints of the form specified in (2).
In the case of click mouse, the following constraints are
generated:

 Sinit < Stransmit < Einit

 Stransmit < Sclick < Etransmit

These constraints determined the temporal relationships
between the processes. In contrast, the fact that init,
transmit, and click are ordered in the “click mouse” rule has
no consequence for their temporal relationships. In fact the
ordering in the rule could be different, perhaps [transmit,
init, click] without consequence for the constraints
generated from rule expansion (cf. GOMS).

Figure 2 presents seven rules describing a set of APCs for
simple motor and perceptual operators, e.g. seeing, hearing,
pressing a mouse button. Each APC (left-hand side of a
rule) maps into a set of information-flow-constrained
architectural processes (right-hand side). The processing
commitments made in these rules concern hypotheses about
the nature of the human cognitive architecture.

The specification of each APC includes not only the details
of the information flows within the operator, as described
for click-mouse above, but also the information flows into
and out of the structure. These information flows are

represented in the parameters on the left-hand side of each
rule. For example, the second rule “check ATTENDED to
FIELD : RESULT” in Figure 2 takes information from an
attentional process, bound to ATTENDED, and returns
RESULT, which is the identifier of the “hold verified in
wm” process.

The rules in Figure 2 are not pseudo-code; they are
presented in the exact syntactic form required for input to a
tool, described below, that given an IRG expands task
descriptions into a set of processes representing cognitive,
perceptual and motor behavior.

Task-Level Rules
In the previous section, we illustrated how IRG can be used
to represent a theory of the temporal properties of a human
cognitive architecture. That in and of itself is a potentially
powerful tool, but here it is a precursor to our primary goal
in this paper which is to demonstrate how to specify
theories of the knowledge required to perform particular
tasks and to thereby show how IRG solves the problems
identified with existing task description languages.

Figure 3 shows the major part of the IRG specification of
the PI task. The rules in the figure are hierarchically
structured, such that method 1 describes the overall task,
which decomposes into the lower-level methods
represented by subsequent rules. The decomposition of the
task continues until all tasks have been expanded into the

1. verify payment
 click Convergys system - LAUNCH,

request lastname and enter into name field after LAUNCH - REQUEST(1),
request zipcode and enter into zip field after REQUEST(1) - REQUEST(2),
click search button after REQUEST(2) - SEARCH,
confirm customer record after SEARCH - CONFIRMATION,
confirm payment after CONFIRMATION.

2. request STRING and enter into FIELD after EVENT - RESULT
 speak STRING and get INFO,

select FIELD and enter INFO after EVENT - RESULT.

3. speak STRING and get INFO

 say STRING - CTRL RESPONSE,
hear RESPONSE - INFO.

4. select FIELD and enter INFO after EVENT - RESULT

 move_click_on FIELD after EVENT : CLICK EFFECT,
see EFFECT at FIELD - SEEN,
type INFO after SEEN - RESULT.

5. move_click_on FIELD after EVENT - CLICK EFFECT

 effect move after EVENT and nil - MOVED CTRL,
move_eyes_to FIELD - FX,
see FIELD at fixation FX - ATTENDED,
check ATTENDED to FIELD - VERIFIED,
effect click after MOVED and VERIFIED - CLICK EFFECT.

Figure 3: IRG rules representing the strategies required for the PI verify payment task. The rules for click and confirm,
called in rule 1, are not listed. (Variables are capitalized, method names are in bold, constants in lowercase, normal font.

Variables after the symbol ‘-‘ are bound within the rule and returned as results.)

cognitive, perceptual or motor processes and their cascaded
information flows that are presented in Figure 2.

The methods in Figure 3 illustrate how higher-order tasks
can be composed from subtasks, which are eventually
composed of the APCs provided by the cognitive
architecture (see Figure 2). At all levels, information flows
between tasks are defined using the parameter passing
mechanism described in the previous section.

Generating a Prediction with Constraint
Satisfaction

Using a tool called CORE (Howes et al., 2004; Vera et al.,
2004; Lewis et al., 2004), temporal constraints generated
through expansion of the IRG are posted to a Sicstus Prolog
CLP FD (Constraint Logic Programming for Finite
Domains) constraint store. They are elaborated with

constraints that determine typical durations for each process
(e.g. as articulated in Card et al.’s Model Human Processor
(MHP)). Constraint satisfaction is used to determine a
prediction of the optimal adaptation to the task constraints.
The output from CORE is a behavior graph, representing
the start times and durations of each process (e.g. Figure 4).
In Figure 4, each row represents a processor and each box
represents a process. The names of each processor are
shown on the left. The figure illustrates two key aspects of
IRG.

1. Cascaded information flows permit theory-congruent
concurrency. Serial order in IRG rules does not impose a
temporal order. Although control constraints specified at
the higher levels of IRG task descriptions (e.g., Figure 3)
may look as though they define a strict linear sequence (as
GOMS methods do), this is in fact not the case. For
example, in Figure 4, it can be seen that the request for the

Figure 4: Part of the behaviour graph for the IRG model of the PI task, showing (from left to right) moving to and

clicking on the name field (u22, u40), the request for the customer’s name (u10), perceiving the feedback that the cursor
is in the name field (u46), typing the name (u51). Many of the processes are conducted concurrently.

customer’s last name (u8 & u10) is predicted to occur
concurrently with the movement of the mouse to the name
field (u20, u22, u38 & u40). The IRG specification ensures
that process scheduling is consistent with information
requirements but does not prevent the concurrent
scheduling of what are otherwise autonomous processes.

2. Cascaded information flows prevent theory-incongruent
interleaving. For example, in Figure 4 there are five init
processes each with a corresponding motor process. The
motor processes are predicted to be scheduled in the same
order as the cognitive init processes. The init processes
transmit information to the motor processor, through a
cascaded buffer. The fact that the buffer resource can
compute only one process at a time, combined with the
need to receive and send information, ensures the consistent
ordering of the cognitive and motor processes. In contrast,
with a language that requires temporal dependencies
between each init and its corresponding motor process no
systematic relationship between the order of the inits and
the order of the motor processes is imposed.

Discussion
We have described a theory, called IRG, of the structure of
competence for interactive task performance. The theory
addresses shortcomings with existing task description
languages, which are either too restrictive (e.g., GOMS) or
too permissive (e.g., UAN, CPM-GOMS, PDL). IRG
demands specification of the information requirements of
each task in the hierarchy. Expansion of the hierarchy and
deduction of the optimal strategy given the cascade-based
constraints results in the generation of a prediction of the
time-course of interactive performance.

A second contribution of the paper is that, in addition to
showing how IRG can be used to express theories of task
competence, we have also shown how it can be used to
express theories of the processing capabilities of a cognitive
architecture (APCs). One might well ask why we chose to
do this: Why did we describe how APCs, such as click
mouse, map into primitive processes? Could we not have
treated APCs as black boxes and pieced these together in
the fashion of GOMS? The answer is no; doing so would
miss a point fundamental to the approach: It is precisely the
fact that we describe the basic resource and information
requirements of the elemental architectural processes that
provides the required constraint on performance. There is
no avoiding this level of detail when parallelism matters.

One response to our critique of UAN and PDL is that they
offer a set of mechanisms sufficiently rich as to enable the
expression of whatever a theorist requires. Indeed
successful efforts have been made in this direction (Vera,
John, Remington, Matessa, Freed, in press). It may even be
possible to capture the inequalities that represent cascaded
information flows. However, such a response would miss
the point that what cognitive science needs is computational
expressions of theories that are not sufficiently rich to

express whatever a modeler wants but rather sufficiently
constrained as to make commitments to the nature of the
underlying human information processing system.

Acknowledgment
The work was supported by the NASA Aviation Operations
Safety Program and the Intelligent Systems Program.

References
Card, S.K., Moran, T.P., and Newell, A. (1983), The

Psychology of Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, USA.

Freed, M., Matessa, M., Remington, R., and Vera, A.
(2003). How Apex Automates CPM-GOMS. In
Proceedings of the 5th International Conference on
Cognitive Modeling, April 10-12. Bamberg, Germany.

Gray, W.D., John, B.E., & Atwood, M.E. (1993). Project
Ernestine: Validating a GOMS analysis for predicting
and explaining real-world task performance. Human-
Computer Interaction, 8, 237-309.

Hartson, H.R., & Gray P.D. (1992). Temporal aspects of
task in the User Action Notation. Human Computer
Interaction, 7, 1-45.

Howes, A., Vera, A., Lewis, R.L., &. McCurdy, M. (2004).
Cognitive Constraint Modeling: A formal approach to
supporting reasoning about behavior. In Proc. 26th
Annual Meeting of the Cognitive Science Society.

Kieras, D.E. (1999). A Guide to GOMS Model Usability
Evaluation Using GOMSL and GLEAN3. Technical
Report. University of Michigan, Ann Arbor, MI.

Lewis, R.L., Howes, A., & Vera, A. (2004). A constraint-
based approach to understanding the composition of skill.
In Proc. Sixth International Conference on Cognitive
Modeling. LEA, Inc., Mahwah, NJ, USA.

McClelland, J. (1979). On the time-relations of mental
processes: An examination of systems of processes in
cascade. Psychological Review, 86, 287-330.

Paterno, F., Mancini, C., & Meniconi, S. (1997).
ConcurTaskTrees: A diagrammatic notation for
specifying task models. In Proc. INTERACT'97.
Chapman & Hall, London, UK.

Salvucci, D.D., & Lee, F.J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In Proc.
CHI 2003. ACM Press, New York, USA.

St. Amant, R., & Ritter, F.E. (2004). Automated GOMS-to-
ACT-R model generation. In Proc. Sixth International
Conference on Cognitive Modeling. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, USA.

Vera, A., Howes, A., McCurdy, M., & Lewis, R.L. (2004).
A constraint satisfaction approach to predicting skilled
interactive performance. In Proc. CHI 2004. ACM Press,
New York, USA.

Vera, A., John, B., Remington, R., Matessa, M., & Freed,
M. (in press). Automating Human-Performance Modeling
at the Millisecond Level. Human-Computer Interaction,
in press.

