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We describe a novel technique in which color table animation in conjunction with a single base image can be used to 
generate a broad class of motion stimuli. We have applied this technique to the generation of drifting sine-wave 
gratings (and by extension, sine-wave plaids). For each drifting grating, sine and cosine spatial phase components 
are first reduced to 1 bit/pixel by using a digital halftoning technique. The resulting pairs of 1-bit images are then 
loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup
table is modified on a frame-by-frame basis. Because the contrasts and temporal frequencies of the various 
components are mutually independent, a large number of two-dimensional stimulus motions can be produced from 
a single image file. We also analyze the effects on the stimulus of a variety of artifacts: the spatial artifacts 
produced by the halftoning process, the spurious motion signals produced by the interaction of these spatial
artifacts and the temporal animation, the artifacts produced by intensity quantization (and inaccurate gamma
correction), and, finally, the important but rarely considered artifact of nonlinear spatial summation. We propose a 
physical model to account for the observed failures of pixel independence that provides an excellent fit to our 
measurements. 

INTRODUCTION 

Motion Stimuli on Digital Displays 
Computer graphic displays offer the experimenter a flexible 
tool for the presentation of visual stimuli. Nevertheless, 
there are still a number of interesting stimuli that pose 
technical problems. A particularly demanding class of stim
ulus consists of slowly moving patterns; for the sake of con
creteness, in the following discussion we will focus on the 
production of a particular stimulus, a sinusoidal grating 
drifting slowly with a velocity of 0.1 pixel/frame. Such a 
stimulus might be used in the measurement of spatiotempo
ral contrast sensitivity, as described by Kelly.' The tech
nique described in this paper, however, is applicable to vir
tually any stimulus composed of drifting gratings, stimuli 
that are used commonly to investigate motion perception. 

Use of Scroll and Pan Registers to Drift an Image 
A common feature of many graphics controllers is a set of 
registers that control the portion of image memory that is 
displaced. The names used to refer to these registers vary 
from manufacturer to manufacturer, some examples being 
window registers, origin registers, and pan and scroll regis
ters. In this paper we refer to them as pan and scroll regis
ters. Regardless of terminology, this hardware feature does 
the same thing in all units: it allows the image to be dis
placed laterally (panned) or vertically (scrolled) by an inte
gral number of pixels. When the setting of these registers is 
synchronized with the display refresh, smooth motion can be 
generated. 

Digital quantization of position can cause a problem, how
ever, in the production of moving stimuli on digital displays. 
The quantization problem arises when one wants to generate 
velocities that are not an integral number of pixels per frame 
time. Consider again the problem of drifting an image at a 
rate of 0.1 pixel/frame. If the desired displacement for any 
given frame is simply rounded to the nearest integer and 

then applied to the pan and scroll registers, the result will be 
jerky motion: instead of moving smoothly with a velocity of 
0.1 pixel/frame, the display will jump by one pixel every 10 
frames. For normal frame rates, this is usually unaccept
able. 

A trick may be used if the stimulus is a periodic one, such 
as a sinusoidal grating. Let us assume that we wish to drift a 
grating having a period of N pixels, for some integer N. To 
use the trick, we instead must force the spatial period to have 
a particular nonintegral value that is slightly different from 
that desired. If the desired velocity is 0.1 pixel/frame, we 
would approximate the desired grating period of N with N + 
0.1. Since this new period is not an integer, the resulting 
digital image will have a period of ON + 1 pixels. (We 
assume that we have enough memory to contain at least two 
periods of ON + 1 pixels.) Now consider resampling the 
same grating shifted by 0.1 pixel. The resulting image is 
equivalent to the original shifted by N pixels! Thus we can 
produce a smoothly drifting grating by computing a single 
image and setting the scroll register to 0, N, 2N, ... , 9N, 
1ON, N - 1, 2N - 1, 3N - 1, and so on. Thus we see that for 
periodic patterns we can generate smooth motion from just a 
single image. The spatial frequency cannot be specified 
arbitrarily, however, and to vary velocity we must compute 
and load a different image. 

All techniques involving scrolling require that we have 
extra display memory so that there is new image to move into 
the display area as we scroll. (Some units provide a wrap
around feature, but this is useless if the pattern does not 
match up at the edges.) Another problem shared by all 
techniques involving scrolling is that they are unsuited to 
displaying moving patterns whose contrast is modulated by 
a stationary window having various gradations of contrast. 
A common example of such a stimulus is a Gabor packet: 
this refers to a sinusoidal grating windowed by a Gaussian. 
(One of the first of many experiments using such a stimulus 
was that described by Watson and Robson.2 ) We can imag
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ine drifting the grating while keeping the Gaussian envelope 
stationary; this vignetting is often done to eliminate edge 
effects. This clearly cannot be done by scrolling, since that 
would displace both the grating and the envelope. 

The Brute Force Solution: Image Sequencing 
The brute force solution is to compute a new image for each 
frame desired in the sequence and to load the complete set of 
images into the display memory before the presentation. 
The image sequencing is then accomplished by modifying 
pan and scroll registers on a frame-by-frame basis. Unlike 
the scrolling technique described in the preceding subsec
tion, there is no overlap between successive frames. Unfor
tunately, this technique is rarely practical, even for systems 
in which the amount of display memory is adequate. For 
two-dimensional stimuli, the amount of computation per 
image is generally large, so it is generally not feasible to 
compute individual stimuli during the course of an experi
mental session on a trial-by-trial basis. A better approach is 
to compute and store all the images before running an ex
periment. This may allow the experiment to run at an 
acceptable rate, but if even a moderate number of different 
stimuli are needed the large requirements for disk storage 
space may rule out this approach. For example, to store a 
10-frame sequence at a spatial resolution of 512 X 512 re
quires 2.5 megabytes. Although this amount in and of itself 
may not sound so large, for an experiment this must be 
multiplied by the number of different stimuli to be present
ed. 

When the number of images to be sequenced is small (or 
the images are small), image sequencing may be feasible and 
is the most straightforward approach. In the context of our 
hypothetical problem, we can imagine generating 10 images, 
each representing the original scene but resampled at loca
tions differing by 0.1 pixel. If the system has enough memo
ry to hold all 10 images, they can be preloaded and then 
sequenced. The cycle of 10 images thus depicts smooth 
motion over a distance corresponding to 1pixel; if vignetting 
is not necessary, then the cycle can then be repeated with 
everything shifted over by 1 pixel (using pan and scroll 
registers as described in the preceding subsection) to pro
duce a longer sequence, The utility of this approach is 
limited by the amount of display memory, since all 10 frames 
must be preloaded. For one-dimensional stimuli that do 
not need to be vignetted along their constant dimension, a 
hardware enlargement, or zoom, feature often incorporated 
into bit-mapped display devices can reduce the memory 
requirements of image sequencing. The appearance of a 
vertical grating will be unaffected by zooming in the vertical 
dimension; thus the memory requirements for each frame 
can be reduced by the maximum zoom factor. 

Color Table Animation 
A common feature on modern raster graphics systems is a 
programmable color lookup table (LUT), which is indexed 
by the pixel value. With this feature, the screen intensity at 
a particular pixel is proportional not to the numerical value 
of that pixel but rather to the value of the LUT entry that is 
indexed by that pixel. The number of LUT entries is gener
ally equal to the number of possible pixel values, although 
some systems provide multiple LUT's. Thus on a system 
with 8 bits/pixel, there would be 256 (28) LUT entries. 

The existence of this hardware feature provides an eco-
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nomical method for producing motion of certain stimuli. 
Successive frames are produced not by reloading image 
memory but simply by loading a few LUT entries. Tech
niques based on this approach are generally referred to as 
color table animation.3 For example, suppose that we want 
to make a line move across the screen in apparent motion. 
We begin by drawing the line in each of its positions in the 
same frame but using a different color for each position. 
(For simplicity, we assume that the different instances do 
not overlap, although overlap can be accommodated.) We 
can use the LUT to make this image appear as a single 
instance of the line simply by programming all the colors but 
one to have the same intensity values as the background. 
One color will be programmed to a different value; the line 
that was drawn in this color will be visible. To make the line 
jump to the next location, we must change only two color 
table locations. The technique gains its power from the fact 
that each color table location potentially affects the entire 
screen. 

This technique can also be applied to stimuli such as 
gratings. Suppose that we want to drift a vertical grating. 
We begin by covering the entire screen with vertical lines, 
using each color (pixel value) in sequence. (The number of 
available colors must be greater than or equal to the grating 
period in pixels.) To produce a sinusoidal grating we simply 
load a series of numbers representing the desired waveform 
into the LUT. This works because we have filled in the 
screen so as to establish a direct relationship between LUT 
indices and screen positions. To drift the grating we reload 
the LUT with the waveform resampled appropriately. 

In the above example, there is nothing special about the 
sinusoidal waveform. In fact, we can choose any set of 
waveforms, and each may be drifted by a different amount 
on each frame. Since the total amount of data is relatively 
small, it may be feasible to compute the resampled wave
forms in real time. Alternatively, since the storage require
ments are not severe, the data can be precomputed. 

This technique is quite powerful when the desired stimuli 
are one dimensional and periodic. The technique is less 
suitable for two-dimensional patterns, such as grating com
pounds having components differing in orientation (plaids). 
In the one-dimensional case, the maximum period is equal to 
the number of distinct pixel values. For plaids, the spatial 
pattern is periodic in two dimensions, so the same finite set 
of pixel values must be distributed over the two-dimensional 
unit cell. This reduces the maximum linear period; for 
example, when the components are equal in frequency and 
perpendicular, the maximum period is 16 pixels. This limi
tation forces the user either to restrict the stimuli to high 
spatial frequencies or to reduce the effective spatial resolu
tion of the display by using clumps of pixels having the same 
value. 

The Problem of Intensity Quantization 
We have seen that the quantization of position imposed by 
the pan and scroll registers complicates the task of produc
ing small movements. In a like fashion, the finite resolution 
of the digital-to-analog converters (DAC's) that produce the 
video signal complicates the task of presenting a stimulus at 
low contrast. For example, with a system having a DAC 
resolution of 8bits, a change of 1 least-significant bit about 
the mean level will produce a luminance change of approxi
mately 1%. Since under optimal conditions the human visu
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al system can detect contrasts as low as 0.5%, this finite DAC 
resolution will introduce noticeable quantization errors into 
a low-contrast sine-wave grating. For many systems, this 
makes the color-cycling technique described in the preced
ing subsection inadequate for displaying patterns at low 
contrasts. 

Stimuli such as sine-wave gratings that must be presented 
at low contrast but with good gray-level resolution are often 
generated by using analog equipment, to avoid the problem 
of intensity quantization that is present with digital systems. 
Several methods have been used to overcome the problem of 
intensity quantization in digital display systems. One ap
proach, described by Watson et al.,

4 is to use an analog mixer 
to combine two (color) channels to produce a single mono
chrome channel with enhanced intensity resolution. While 
this solution is satisfactory for many monochrome applica
tions, it cannot be generalized easily for color display. 

Another class of solutions enhances intensity resolution at 
the expense of redundant spatial resolution. Reproduction 
of continuous-tone photographs in newspapers is accom
plished by one such technique, commonly referred to as 
halftoning. A large variety of algorithms exist for halfton
ing digital images; these were reviewed by Stoffel and More
land5 and Ulichney6 ; see also the recent paper by Knuth.7 

Mulligan 8 has analyzed some of the problems particular to 
the halftoning of color images. 

All halftoning schemes gain intensity resolution at the 
expense of introducing some high-frequency spatial noise. 
The contrast of this noise is proportional to the pixel con
trast (i.e., the contrast between the light and dark halftoning 
elements) and therefore is reduced at low signal contrasts, 
assuming that the signal contrast is varied efficiently by 
changing the pixel contrast as opposed to redoing the half-
toning at the new signal contrast. Producing a constant 
ratio between the signal and the noise for a given halftone is 
distinct from the more traditional scheme of setting each 
pixel independently to the closest approximation to the de
sired luminance at that point; in the latter case the quantiza
tion noise (at harmonics of the signal frequency) appears 
only at low signal contrast. The fact that the quantization 
noise in halftoned patterns is not concentrated at harmonics 
of the signal frequency and does not change its character 
with signal strength makes these patterns particularly useful 
for experiments requiring the presentation of stimuli at 
many different (and often low) contrasts (i.e., threshold 
measurement). 

METHOD 

Requirements 
We seek a technique for producing motions that satisfies the 
following criteria: (1) the speed is continuously variable, (2) 
speed changes may be made without reloading image memo
ry, (3) gratings may be drifted in stationary windows, and (4) 
presentations may be made for arbitrary durations. The 
remainder of this paper is devoted to a discussion of a tech
nique that satisfies all these criteria. Although every at
tempt has been made to keep the discussion independent of 
any particular graphics system, the following assumptions 
must be made: (1) the image memory consists of 2 or more 
bits per pixel and (2) the final screen intensity is not neces
sarily proportional to the pixel value but is determined by 
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the contents of a programmable LUT that is indexed by the 
pixel value. It is also necessary that the LUT be program
mable on a frame-by-frame basis. Since the amount of data 
is never large (compared with the amount of data in an 
image), this is not usually limited by input-output rates. 

The number of bits allocated to each entry in the hard
ware LUT is closely related to the number of bits used by the 
video DAC's. For a monochrome system, these numbers 
will be the same. For a color system, the number of bits in 
each LUT entry will be 3 times the number of individual 
DAC bits; this is often expressed in bits per phosphor. The 
number of entries must be 2, in which n is the number of 
bits per pixel. A possible configuration for a color system 
consists of image memory having 8 bits/pixel and 8-bit 
DAC's for red, green, and blue. In this case, the LUT would 
have 256 (28) entries of 24 (3 X 8) bits each, corresponding to 
8 bits/phosphor. 

In the following subsections, we frequently discuss setting 
the LUT data to a particular set of values. It is important to 
realize that typical display monitors exhibit a highly nonlin
ear relationship between input voltage and output light in
tensity (often referred to as the gamma nonlinearity). This 
accelerating nonlinearity can often be described well by a 
power function with an exponent between 2 and 3. Video 
broadcast standards prescribe a certain value of the expo
nent, but individual monitors must be calibrated for preci
sion work. Therefore, if one wishes to display an intensity of 
exactly half of the maximum luminance, the corresponding 
LUT value will not be simply half of the maximum numeri
cal LUT setting but must be a particular value determined 
from the calibration data. The process of determining the 
appropriate LUT value for a particular desired luminance is 
referred to as gamma correction. It is often convenient from 
a programming standpoint to embed the gamma correction 
process in a low-level subroutine so that the transformation 
is done transparently to the user; that is, the user specifies a 
desired luminance, and the system automatically deter
mines the appropriate LUT value. In the following discus
sion the values that we refer to as LUT data represent de
sired luminances; these would correspond to the actual num
bers entered into the hardware LUT only if the monitor is 
linear (no gamma correction required). 

Description of the Method 
To understand the technique, it is necessary to realize that 
any display that has more than 1bit/pixel can be thought of 
as consisting of a number of bit planes, in which each bit 
plane is thought of as an independent bit-map image. (In 
the following discussion we will assume that set bits corre
spond to bright pixels.) Consider a system with two bit 
planes (2 bits/pixel); the corresponding LUT will have 4 
entries. If each bit plane contains a different bit-map im
age, we display the image in a single bit plane, say, bit plane 
0, by programming the LUT as follows: 

LUT index LUT data 
0 (002), 100 = 0 (black), 
1 (012), 101 =,2Lo (white), 
2 (102), 110 = 0 (black), 
3 (112), 11 = 2Lo (white). 

The numbers in parentheses to the right of the indices are 
the binary representations of the corresponding indices. 
This representation is useful because each binary digit of the 
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LUT index represents a different bit plane. In the above 
example, LUT entries are set to white if bit 0 (the least-
significant bit) is set, and they are set to black otherwise. Lo 
represents the luminance of the display's middle gray. Let 
us introduce the symbol l to represent the table entry whose 
index has digits i and j when expressed in binary form. We 
can then represent the pattern in the table more succinctly 
as follows: 

lij = L[ +(-il](1 

To display the image in bit plane 1, on the other hand, we 
must set the LUT data to white whenever bit 1of the index is 
set and to black otherwise. The compact description of this 
relationship is similar to Eq. (1): 

i = Lo[1 + (-l)i+']. (2) 

We see that by programming the LUT appropriately, we 
can display (or conceal) the bit-map images in any single bit 
plane. We can generalize this principle to produce displays 
whose luminances are sums of the patterns in the two bit 
planes. The following settings of the LUT produce a display 
corresponding to a modulation of the image in bit plane 0 at 
contrast Co added to a modulation of the image in bit plane 1 
at contrast Cl: 

LUT index LUT data 
0 (002), 1oo= Lo(1 - Co - Ci), 
1 (012), lo, = Lo (1 + Co-C,), 
2 (102), lo = Lo (1-Co + C,), 
3 (112), l, =Lo( + Co+ C). 

Alternatively, 

i = L[1 + (-1)Y+'Co + (-1)i+'C1]. (3) 

Since none of the lij can be negative, the sum of the contrasts 
C0 + C, must be less than or equal to 1. 

Consider once again the problem of producing a drifting 
grating. An elementary trigonometric identity tells us that 
a drifting grating may be decomposed as the superposition of 
two counterphase-modulated gratings, in quadrature spatial 
and temporal phase: 

sin(wx + t) = sin(wx)cos(vt) + cos(wx)sin(vt). 

We can use this identity in the following manner: first, we 
reduce the sine and cosine (spatial) phase gratings to 1-bit/ 
pixel images by halftoning. The method does not depend on 
which particular halftoning algorithm is used; in our labora
tory we use a variant of error diffusion9 described by Mulli
gan. 8 This algorithm differs from the original error-diffu
sion algorithm in that the lines are scanned alternately from 
left to right and from right to left in order to eliminate 
structured artifacts. These two halftoned images are then 
loaded into two bit planes of the display device. A drifting 
grating can now be displayed by reloading the LUT on a 
frame-by-frame basis: we rewrite Eq. (3), making C0 and C, 
functions of time as follows: 

ii = Lo[l + (-1)'+'C cos(vt) + (-1)j+'C sin(pt)], (4) 

The parameter C is simply the contrast of the drifting grat
ing. At this point we recall that earlier in this section we 
observed that the sum of the individual bit-plane contrasts 
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must be less than or equal to 1; in this case, the sum is 
maximal when vt = r/4, for which it reaches a value of WC. 
The maximum contrast at which we can drift a grating is 
therefore /2, or approximately 71%. [If it is imperative to 
achieve higher contrasts, this can be done by allocating more 
bit planes to other phases of the grating besides 0 and 90 deg. 
If we produce multiple versions of the grating, in which 
successive instances have a relative phase difference of 0 
degrees, then the maximum attainable drifting contrast will 
be cos(0/2).] 

This scheme has several advantages. Although there is a 
substantial amount of computation in generating the half-
toned images, once that has been done a single image may be 
loaded that can produce stimuli of many different contrasts 
and drift velocities. Windowing the drifting gratings with a 
stationary Gaussian envelope (or any other envelope) can 
also be done; the product of the window and the grating is 
taken before the halftoning step. 

In the discussion above, we assumed the existence of only 
two bit planes. If more are available, however, additional 
gratings (possibly differing in spatial frequency and orienta
tion) may be loaded into additional pairs of bit planes. 
Thus this scheme is admirably suited to the generation of 
sine-wave plaid patterns."0' 6 Since the speeds of the vari
ous grating components are independent, a variety of resul
tant plaid velocities may be generated from a single base 
image. Furthermore, since the contrasts of the various plaid 
components are similarly independent, the effect of the rela
tive contrast of the components may be studied without the 
need to generate new images for each stimulus. 

Shadlen et al.'7 demonstrated an interesting technique for 
producing nonrigid, constant-temporal-frequency motion 
based on flickering arbitrary base images in temporal quad
rature with spatial quadrature image partners obtained by 
applying odd-symmetric filter functions. Our technique is 
eminently suited for this type of presentation also; in this 
case the sine and cosine spatial phase gratings are simply 
replaced by the original and filtered images. 

LIMITATIONS 

We have described a method of combining digital halftoning 
with dynamic LUT programming to produce drifting plaid 
patterns. We have found this method to be superior to 
other approaches in both flexibility and freedom from arti
facts. Nevertheless, there are a few artifacts that are unique 
to this technique, and the remainder of this paper is devoted 
to their analysis. 

This section is divided into four subsections. In the first 
subsection we consider the spatial noise introduced by half-
toning; this is a cursory treatment of a subject that is covered 
in depth by Ulichney,6 but we include it for completeness 
and to provide a framework for things to come. In the 
second subsection we analyze what happens to the halfton
ing noise when the color table is modified to drift the pat
terns, and we show how the resulting spatiotemporal noise 
can be decomposed into components of flicker and drift. In 
the third subsection we analyze artifacts arising from inten
sity quantization as a result of finite DAC resolution. Final
ly, we introduce a nonlinear monitor artifact that to our 
knowledge has not heretofore been considered. 
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We hope that the lengthy discussion of artifacts does not 
cause the reader to disparage the utility of the technique; our 
intention is to demonstrate that the artifacts are easy to 
calculate, so that researchers using the method can assure 
themselves that the artifacts in their stimuli are negligible. 

Purely Spatial Artifacts Introduced by Halftoning 
Halftoning increases intensity resolution at the expense of 
spatial resolution. Thus the technique described above is 
unsuitable for applications requiring high spatial frequen
cies. If large numbers of spatial cycles are not required, 
however, high retinal spatial frequencies can be obtained 
with a larger viewing distance or optical minification. 

The halftoning process also adds noise. Figure 1 shows a 
unit-contrast Gabor patch halftoned on a 256 X 256 array of 
pixels, with a carrier period of 32 pixels and a two-dimen
sional Gaussian window having a standard deviation of 45.3 
pixels. This test image was used for all the following noise 
computations. An error signal was computed by subtract
ing the original (unquantized) image from the halftoned 
version of the image. The discrete Fourier transform (DFT) 
of this error signal was then computed, after first multiply
ing with a two-dimensional Gaussian window function with a 
standard deviation of 33.9 pixels to reduce spectral leakage 
and wraparound artifacts.18 A radially averaged spectrum 
was computed from the two-dimensional DFT by the meth
od of Ulichney.6 This is shown in Fig. 2(a), which illustrates 
the high-pass character of the halftoning noise. The hori
zontal axis represents spatial frequency averaged over all 
orientations, with 1/128-cycle/sample bins. The vertical 
axis represents the logarithm to the base 10 of the average 
Fourier amplitude. The abscissa extends beyond the nomi
nal Nyquist frequency of 0.5 cycle per sample by a factor of 
'1.4 (2). Frequencies above 0.5 cycle per sample are not 
present at all orientations; the highest frequency represents 

Fig. 1. Two-dimensional Gabor patch halftoned on a 256 X 256 
pixel grid. This quantization noise in the image was used to com
pute subsequent noise spectra. 
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Fig. 2. (a) Radially averaged spectrum of the quantization noise 
present in the image in Fig. 1. The frequencies above the Nyquist 
limit of 0.5 cycle/sample are present only at oblique orientations. 
(b) Similar to (a) but here the two-dimensional noise spectrum was 
averaged over spatial frequency and is shown as a functon of orien
tation. The bumps at 45 and 135 are due to the high-pass nature of 
the spectrum shown in (a) combined with the fact that the highest-
frequencies are present only at oblique orientations, i.e., the corners 
of the square spectrum. 

the corner of the two-dimensional frequency space and con
tains only samples from orientations of 45 and 135 deg. 

In Fig. 2(b), the same DFT has been reduced to a one-
dimensional plot, in which instead of averaging over orienta
tion for a fixed spatial frequency we have averaged over all 
spatial frequencies at a given orientation (1-deg bins). Fig
ure 2(b) shows that there are no systematically oriented 
structures in the noise with the exception of the two bumps 
that appear at 45 and 135 deg. These features can be under
stood in light of the observation made in the preceding 
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paragraph that the highest spatial frequencies occur only at 
the oblique orientations; this result, coupled with the data in 
Fig. 2(a) showing that these high frequencies have the high
est average amplitude, explains the small bumps seen in Fig. 
2(b). 

The halftoning procedure partitions the quantization 
noise selectively into the high picture frequencies. The 
viewing distance may be adjusted so that this noise corre
sponds to high retinal frequencies to which the human visual 
system is relatively insensitive. Furthermore, when the sig
nal contrast is reduced, the noise amplitude is reduced pro
portionately. [The curves in Figs. 2(a) and 2(b) are for a 
signal contrast of 1.0.] Thus in many situations the noise 
can be made invisible simply by using moderate to low con
trasts and high-frequency signals (which permit correspond
ing large viewing distances, reducing the pixel size). 

Spatiotemporal Artifacts 
The motion stimulus that we have described is produced by 
summing sine and cosine spatial patterns that are counter-
phase modulated in temporal quadrature. We have also 
shown how this can be accomplished by halftoning the sine 
and cosine spatial patterns and loading the resulting bit 
maps into individual display bit planes. In the preceding 
subsection we have analyzed the static noise in a single bit 
map. In this subsection we analyze the spatiotemporal 
characteristics of the noise when we perform the temporal 
modulation needed to produce the motion stimulus. 

Consider a particular spatial noise component in the co
sine phase bit map. It has a particular spatial frequency and 
orientation; for simplicity we will consider it to be a function 
of a single spatial coordinate (x) and choose our system of 
units so that the angular frequency has a value of 1. We can 
then express this particular component as follows: 

N,(x) = A1 cos(x + 01), 

in which the parameter Al represents the Fourier amplitude 
and 01 is the spatial phase. When we animate the motion 
sequence, this pattern will be counterphase modulated in 
sine phase: 

NC(x, t) = Al cos(x + 01)sin(t). 

We have arbitrarily chosen a unit angular temporal frequen
cy. This counterphase grating can be decomposed as the 
sum of rightward- and leftward-drifting gratings: 

Al 
NC(x, t) = -y [sin(t + x + 01) + sin(t - x - 01)]. 

The corresponding noise component in the sine phase bit 
map has some other amplitude and phase, A2 and 02. We 
can write a similar expression for the spatiotemporal signal 
contributed by this bit map: 

NS(x, t) 	= A2 cos(t)cos(x + 2) 

A2 
= - [cos(t + x + 02) + cos(t - X - 02).2 

The noise in the composite image is simply the sum of these 
two quantities: 

NC(x, t) + NS(x, t) = AR cos(x + t- k) 

+ AL COS(X-t-0 2 ), (5) 

where 
2AR = /2 [A 2 + A2 + 2AA 2 sin(01 - 02)], 

2AL = /2 [Al2 + A2 - 2A 1A2 sin(01 - 02)], 

= tani Al cos 01 - A2 sin 2 

Al sin 01 + A2 cos 02 

2= tan-	 -Al cos 01 - A2 sin 02 

-Al sin 01 + A2 cos 02/ 

In Eq. (5) we have expressed a spatiotemporal artifact as a 
sum of leftward- and rightward-drifting gratings, having 
independent amplitudes and starting phases. We now pro
pose that this quantity can be considered to be the sum of a 
stationary flickering component with an amplitude min (AR, 
AL) and a drifting component with an amplitude AR - ALI, 
which moves to the right if AR >AL and to the left ifAR <AL-

This decomposition is illustrated graphically in Fig. 3. 
The original amplitudes and phases can be considered to be 
polar coordinates of vectors representing the two spatial 
components. To the right of the two initial vectors is shown 
the decomposition into rightward- and leftward-drifting 
components that is described above. Below this is shown a 
graphical interpretation of the decomposition into flicker 
and drift. The shorter of the two original vectors (which we 
assume to be V2) may be decomposed into parallel and per
pendicular components relative to v. The perpendicular 
component can be paired with a fraction of vl having equal 
length to produce a pure drift signal. The remainder of v 
and the parallel component of V2 represent gratings having 

V1 

+ 

V2 

RIGHTWARD LEFTWARD 

+/ 

DRIFT FLICKER 
Fig. 3. Graphical construction showing how spatiotemporal noise 
at a particular frequency and orientation may be decomposed into a 
sum of drifting and flickering components. The two vectors at the 
upper left represent the amplitudes and phases of a particular noise 
component in the halftoned versions of the sine and cosine signal 
phases. To the right of these vectors is shown the decomposition 
into rightward and leftward components described in the text. Be
low is shown an alternative graphical decomposition. The shorter 
of the two vectors ( 2) is decomposed into parallel and perpendicu
lar components (with respect to v); a fraction of the longer vector 
(vl) equal in length to the perpendicular component combines with 
it to form a pure drift component. The remaining parallel compo
nents correspond to a pure flicker signal. (The vector lengths 
shown in the figure are not represented precisely.) 
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Fig. 4. (a) Radially averaged noise spectra after lecomposition 
into flicker and drift components when the Gabor siggnal in Fig. 1 is 
made to drift. The bold curve represents the average flicker ampli-
tude, and the light and dashed curves represent left% 
ward motion signals, respectively. (b) The same tw o-dimensional 
spectra used to generate (a) are averaged over spatial frequency and 
plotted as a function of orientation. 

the same spatial phase; when they are temporal] .modulated 
the result is pure flicker. 

We estimated the amounts of these types of artifact for 
the pattern shown in Fig. 1 and its companion cosine phase 
bit map. Complex Fourier spectra were first c:omputed for 
the quantization noise in each pattern. For each pair of 
corresponding Fourier components drift and flicker ampli-
tudes were computed as described above. ThEese were thenl 
averaged over spatial frequency [Fig. 4(a)] an I orientation 
[Fig. 4(b)]. The curves for both flicker and drifthaverough-
ly the same shape as the curves in Figs. 2(a) arLd 2(b). The 
figures show that at a given spatial frequency cor orientation 
the average flicker amplitude is approximate ly 1 log unit 
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greater than the average amount of rightward or leftward 
drift, with the drift component evenly partitioned between 
rightward and leftward components. For oblique orienta
tions, velocity vectors in quadrants 1 and 4 were classified as 
rightward, those in quadrants 2 and 3 as leftward. 

Artifacts Introduced by Intensity Quantization 
A conventional method for producing a grating is to produce 
tonal gradations by using the LUT settings to modulate a 
series of uniformly drawn strips. Producing a sinusoidal 
grating using this method depends critically on accurate 
compensation for the monitor's light-intensity-versus-volt
age function, or gamma. Deviations from perfect linearity, 
caused by either calibration inaccuracy or quantization er
rors, will produce harmonic distortion of the waveform. 

Halftoned gratings, on the other hand, depend on linearity 
of spatial interactions in the monitor and in the eye to obtain 
a faithful rendition with no harmonic distortion. Errors in 
luminance settings, whether due to quantization or to cali
bration error, give rise to a different type of artifact under 
these circumstances, which we will investigate in this sub
section. When these errors occur as a result of DAC quanti
zation, they may be reduced to some extent by temporal 
error diffusion, a process analogous to the halftoning that we 
have done in the spatial domain. 

First let us consider the densities of various pixel values in 
the image. We assume that each of the gratings was half-
toned to produce 100% modulation of density of its particu
lar bit. We define gl(x, y) to represent the local probability 
of a bit's being set in bit plane 0. This is not an accurate 
statistical model of an image halftoned by error diffusion, 
since the state of a particular bit depends on the states of its 
neighbors. Nevertheless, the function gl(x, y) does accu
rately describe the density of set pixels averaged over an area 
where gl(x, y) is relatively uniform. Let g2(x, y) represent 
the corresponding probability function of the image in bit 
plane 1. We make the further assumption that the proba
bility of a pixel's having both bits set is simply the product of 

the probabilities for the individual bits. We introduce the 
symbol dij to represent the local probability of a pixel's 
having the value lij. We can now write expressions for these 
probabilities in terms of the probabilities in the individual 
biplns 

doo(x, y) = [1 -g 1(x,y)] [1 -g2 (x, y)], 

d01(x, y) = g1(x, y) -g 2 (x, y)], 

djo(x, y) = [1 - g1(X, Y)]g 2(X, Y) 

dll(x, y) = g1(X,Y)g2(X,y) 

For the case of vertical gratings, gl(x, y) = [1 + cos(x)1/2 and 

g2(x, y) = [1 + sin(x)]/2. We can therefore simplify the 
expressions for the functions dij: 

d,0(x, y) = /4(1- sin x - cos x + sin x cos x), 

do,(x,y) = 1/4(] - sinx + cosx - sinx cosx), 

djo(x, y) = 1/4(1 + sinx - cos x - sin x cosx), 

dll(x, y) = /4(1 + sin x + cosx + sin x cos x). 

Now let us consider setting the LUT with a set of four 
arbitrary values, lij;. The local luminance (computed over a 
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neighborhood of a few pixels) is the sum of the light contrib
uted by each type of pixel; this is simply the product of the 
luminance of that pixel type, lij, and the density of that pixel 
type, dij: 

1 1 

L(x, y) = ljdij(x, ). (6) 
i=O j=O 

Let us make the definitions 
1 1 

Lmeanl = 4 E lij, (7) 
i=o j=0 

1 1 Y1 
Al -4 E lj(-1) (8) 

i=o j=o 

A2 = - lij(-1)j+l, (9) 
i=o j=o 

I1 i] -~~ 
Aprod = E l(-1)i+(.1)J+l (10) 

i=o j=o 

and the auxiliary definitions C = A/Lmean, C2 = A2/Lmean, 
and Cprod = Aprod/Lmean; we can write Eq. (6) for L(x, y): 

L(x, y) = Lmean(l + C sin x + C2cos x + Cprd sin x cos x). 

(11) 

This equation tells us that the display contains a sine phase 
grating with contrast C1, a cosine phase grating with contrast 
C2,and a product grating with contrast Cprod. Remembering 
that sin x cos x = 1/2sin 2x, we can see that the so-called 
product term produces an artifact at the second harmonic of 
the grating. 

Normally we will program the Jljj} according to Eq. (4); if 
we could do this exactly, Cprod would be zero. Because we 
are working with a digital system, the desired values of 1lij) 
must be approximated from a finite set corresponding to the 
possible DAC settings. The quantization errors in the 
present actual values of the Jlifl can cause Cprod to be nonzero 
as well as introduce errors into all the other quantities de
fined in Eqs. (7)-(10). 

We see that in this situation, intensity quantization can 
introduce errors into the contrasts of the gratings. If there 
are only two possible gray levels, then a given bit map can be 
presented only at a single contrast. Ignoring for the mo
ment the problem of gamma correction, if we have N bits of 
DAC resolution (yielding 2 N gray levels), then we should 
have 2 N-1 possible contrasts if we restrict the mean lumi
nance to the midpoint of the range. In our laboratory we are 
fortunate to have a display system with 10-bit DAC resolu
tion, and we have not found it necessary to do anything 
special to compensate for contrast quantization. On sys
tems having lower DAC resolution, the problem of contrast 
quantization might be alleviated by performing temporal 
error diffusion. By this we mean that in each frame we 
desire to present a certain contrast of each component. 
This translates into a specific set of LUT data values. In
tensity quantization limits the precision with which we can 
approximate any desired set of values. At each frame we 
compute a contrast error as the difference between the de
sired contrast and that actually obtained after roundoff: 
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Cerror(t) = Cactual(t) Cdesired(t). 

For the next frame, we substract this error from the desired 
value before rounding: 

Cdesired(t + At) = Cdesired(t + At) - Cerror(t). 

In spatial halftoning, we approximate a gray level by a series 
of closely spaced transitions between black and white. 
Likewise, in the case of temporal error diffusion, we approxi
mate a given desired contrast level by a rapid temporal 
alternation of bracketing contrasts. 

Because of the way in which we are synthesizing a drifting 
grating, a contrast error of the sine or cosine phase compo
nent will result in a position error of the composite grating. 
Because of this, it might be desirable to minimize the error in 
the contrast ratio of the two components rather than the 
errors in the individual contrasts themselves. 

Although we have used the example of diffusing the error 
into the desired contrasts, since the errors are actually intro
duced at the level of the individual LUT entries the various 
types of contrast error are not independent. Special 
schemes might be devised to partition the error selectively 
into the four components identified in Eqs. (7)-(10); for 
example, it should be possible to minimize the amount of 
second-harmonic artifact by permitting larger quantization 
errors on the grating component contrasts. Such a scheme 
might be performed by using different temporal spread 
functions for the various error components. For example, if 
for some reason we could not tolerate any second-harmonic 
artifact, we could subtract all the error in Cprod in the subse
quent temporal sample (as was suggested above) while parti
tioning the other errors into fractions that would trickle in 
over a number of temporal samples. This type of approach 
was applied by Mulligan8 to the halftoning of color images 
with the goal of partitioning the chromatic components into 
a lower-frequency band than the luminance errors. 

Artifacts Due to Nonlinear Spatial Interactions 
An implicit assumption underlying the method described 
above has been that the total luminous flux contributed by a 
given pixel depends only on its numerical value (and the 
LUT settings, of course) and is independent of the values of 
neighboring pixels. (It is acceptable for pixels to overlap 
somewhat, as long as their luminances summate linearly.) 
Unfortunately, many monitors fail in this respect. Figure 5 
shows some empirical data characterizing the nature of this 
failure. (We do not name the make and model as a courtesy 
to the manufacturer; in all fairness, we suspect that devi
ations of this magnitude may be present in many so-called 
good monitors.) In Fig. 5 we have plotted space-average 
luminance as a function of pixel density while holding pixel 
contrast constant at a value of 1.0 (a pixel contrast of 1.0 
means that all pixels were either black or white). Each 
point represents a reading made from a different two-color 
bit-map image; these were obtained simply by applying the 
halftoning algorithm to a uniform field of variable level. 
Figure 5 shows that the luminance is not simply proportional 
to the density of white pixels; regions containing a mix of 
black and white pixels are dimmer than they should be, with 
the deviation being largest when the density is near 0.5 
(where black and white pixels alternate on a pixel-by-pixel 
basis). 
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Fig. 5. Space-average monitor luminance, plotted as a function of 
halftone density. Pixel contrast was held constant at a value of 1.0. 
The straight line with a slope of 1 represents ideal performance. 
The actual data (filled triangles) show a significant deviation. 
Open squares show predictions from a model consisting of an expo
nential low-pass filter with a time constant of 0.65 pixel followed by 
the monitor gamma nonlinearity modeled as a power function with 
an exponent of 2.6. 

One type of failure that we fortunately do not observe in 
this particular monitor can occur in a monitor that has an 
inadequate power supply. In this case the luminance of a 
large white area will be less than that of a smaller white area 
because the power supply droops under the load imposed by 
a large illuminated area. A defect such as this would show 
up as a compressive nonlinearity in a measurement of lumi
nance versus pixel density. This type of nonlinearity is the 
opposite of that which we observe with our monitor, as is 
shown in Fig. 5. 

What then might be the mechanism responsible for the 
accelerating nonlinearity that we observe? The clue that led 
to our hypothesis is that the monitor gamma (the function 
relating input voltage to output luminance) is also a positive
ly accelerating function. This in and of itself should have no 
effect, since all our bit maps are composed of only two types 
of pixel. The gamma function might affect the actual lu
minances corresponding to black and white, but our ideal
ized conception of the gamma function is that of a point 
nonlinearity with no spatial interaction. We can produce a 
spatial interaction, however, by postulating that the incom
ing video signal is passed through a low-pass filter before the 
nonlinearity. Without a detailed study of monitor electron
ics this seems to be a plausible hypothesis; the low-pass filter 
could easily be the first stage of amplification in the monitor 
circuitry. 

In our model, the artifact illustrated in Fig. 5 would be 
produced as follows: at the extremes of pixel density, there 
are few transitions from light to dark, so the low-pass filter 
has a negligible effect. When there are many transitions, 
however, the effect of the low-pass filter is to transform a 
signal that nominally represents black-white-black to one 

that represents dark gray-light gray-dark gray. After this 
signal passes through the monitor's gamma nonlinearity, the 
mean of dark gray and light gray is no longer equal to the 
mean of black and white. This idea is illustrated graphically 
in Fig. 6. 

We simulated this model by digitally filtering the test 
images with an exponential filter and then passing it through 
a point nonlinearity corresponding to the gamma function. 
The nonlinearity that we used was a power function with an 
exponent of 2.6, which approximates the calibration data 
measured with spatially uniform fields. The time constant 
of the low-pass filter was varied to fit to the data by eye. 
Because of the nature of the raster scan process, the tempo
ral bandwidth of the video amplifier can be identified with a 
corresponding space constant in the resulting image on the 
screen. Model predictions obtained by using a space con
stant corresponding to 0.65 pixel are shown with the actual 
data in Fig. 5. The agreement between model and data is 
quite good, although it should be noted that the value of the 
corresponding time constant is more than twice as large as 
the manufacturer's specification of the video amplifier rise 
time. It may be that the amplifier specifications are correct 
and that the filtering occurs at some other stage; alternative
ly, the specifications may be inaccurate. We are also open to 
the suggestion that the model is inaccurate in a mechanistic 
sense; this does not concern us, since the purpose of the 
model is simply to allow us to predict the artifacts in arbi
trary stimuli. 

An implication of this model is that the deviation from 
linearity seen in Fig. 5 should depend on pixel contrast. 
Obviously there is no effect of pixel density when the pixel 
contrast is 0.0; the model makes a specific prediction, howev
er that the size of the nonlinearity will depend in a nonlinear 
way on pixel contrast. 

500 

z 400 

t 300 

.0 

X 200 

7 100z 

- 0 

\ ACTUAL / 
INPUTS 

DESIRED 
INPUTS 

INPUT VOLTAGE (arbitrary units) 

Fig. 6. Diagram illustrating why the model predicts large devi
ations from linearity at high pixel contrasts. The curve represents 
the monitor's gamma nonlinearity, in this case a power function 
with an exponent of 2.6. Below the horizontal axis the actual inputs 
are shown to be displaced equal amounts from the desired inputs; 
this is presumed to occur through the action of a low-pass filter 
somewhere in the monitor electronics. After passing through the 
gamma nonlinearity, the actual outputs are displaced unequal 
amounts from the desired outputs, resulting in a shift of the mean 
luminance. For small pixel contrasts the gamma function is ap
proximately linear, so no deviation occurs. 
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Fig. 7. Space-average monitor luminance is plotted as a function of 
pixel contrast. Halftone density was held constant at a value of 0.5. 
Ideal performance would be represented by a perfectly flat curve. 
Actual measurements (filled triangles) and model predictions (open
squares) exhibit large deviations only at the highest pixel contrasts. 
Input voltages for each pixel contrast were determined by a prior 
gamma correction calibration done with uniform fields. 

Figure 7 shows the results of measurements made to test 
this idea. For these measurements, only a single bit map 
was used, having a pixel density of 0.5 (the density at which 
we observed the greatest departure from linearity). The 
abcissa represents pixel contrast, and the ordinate repre
sents the measured space-average luminance. The data 
show that the space-average luminance is relatively constant 
for a pixel contrast as large as -0.7, at which point it de
creases dramatically. It is important to observe at this point 
that we attempted to correct for the monitor gamma before 
programming the values to produce a particular pixel con
trast; if we had not done this we would not have expected to 
get a flat curve, regardless of any spatial interactions. 

Figure 7 also shows the model predictions. The predic
tions shown in Fig. 7 were obtained by using the same model 
parameters that were obtained by optimizing the fit to the 
data in Fig. 5. The agreement is quite good, although not 
quite so good as in Fig. 5. This is probably because the 
results in Fig. 7 depend more heavily on the precise nature of 
the gamma function, since gamma correction was applied to 
the raw input images for both the model and the actual 
measurements. The model gamma function was a power 
function with a single exponent, whereas the gamma correc
tion of the actual monitor used a slightly different exponent 
at the lowest values. Since the extreme linearizing table 
entries are used only at the higher pixel contrasts, this is the 
region in which we might expect to find small deviations 
between the measurements and the model, as are observed. 

It is likely that our model oversimplifies the physical pro
cesses acting in the monitor electronics. Regardless of the 
actual mechanism, however, we believe that having a valid 
descriptive model of the artifact can be of some use in devis
ing strategies to eliminate it. For static images that will be 
presented at a fixed contrast, a workable solution could be 
obtained simply by passing the input image through a com-

J. B. Mulligan and L. S. Stone 

pensating nonlinearity before halftoning. Unfortunately, 
this will not work for images in which the pixel contrast is 
changed dynamically, however, since the magnitude of the 
artifact depends on pixel contrast (Fig. 7). We have found 
only one solution to the problem: we used a higher-band
width monitor that had only a tiny amount of artifact. 
Since many monitors may have this defect, however, we 
must advise potential users of the technique to check their 
monitors and, if necessary, to reduce the artifact by working 
at lower pixel contrasts. 

The above analysis is only for the case of two pixel species; 
a complete analysis of the artifacts present in our drifting 
sine-wave stimulus is beyond the scope of this paper. Based 
on the good fit between the model and our measurements of 
the artifact, however, we believe that the model is adequate 
for estimating the artifacts present in any given stimulus. 

CONCLUSION 

Halftoning in conjunction with dynamic LUT modification 
is a powerful technique for the generation of moving stimuli 
for vision research. By using this technique, contrast and 
temporal frequency can be varied with a negligible amount 
of computation once a single base image has been produced. 
Since only two bit planes are needed to display a single 
drifting grating, an 8-bit/pixel display can be used to gener
ate four-component plaids, in which each component of the 
plaid has independently programmable contrast and tempo
ral frequency (speed). (The same display might be used to 
generate two-component plaids in which the constituent 
patterns are halftoned to 2 bits/pixel instead of 1, reducing 
the halftoning noise for high-contrast patterns.) Artifacts 
can be minimized by careful monitor gamma correction and 
by working at pixel contrasts at which monitor spatial inter
actions are linear. This technique makes it possible to pro
duce complex motion stimuli that are difficult if not impos
sible to produce by other means. 
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