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Anisotropy in an ambiguous kinetic depth effect
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A set of animated stimuli (Lissajous figures), each element of which is physically consistent with two different
three-dimensional shapes undergoing rigid rotations about orthogonal axes, is described. Human observers
typically show a preference for one shape or the other; this preference may be biased by manipulating various
parameters of the stimulus. Fairly good predictions of which shape will be seen are made by using an adapta-
tion of Hildreth's smoothest-velocity-field computation. When a given stimulus is rotated 900 in the picture
plane, the resolution of the ambiguity is often different, demonstrating anisotropy in the processing of the
figures. The nature of this bias is such that for certain figures subjects see a three-dimensional object rotat-
ing about a vertical axis regardless of which two-dimensional orientation is used to present the stimulus. This
bias is not predicted by the Hildreth model. One interpretation of the results is that the ambiguity in two-
dimensional visual motion (i.e., the aperture problem) is not resolved before the interpretation of the three-
dimensional structure.

1. INTRODUCTION

Human perception of three-dimensional shape from a se-
quence of two-dimensional images is an extraordinary
feat that is often taken for granted. The visual system
must compute both a depth and a third component of ve-
locity for each point in the scene and do so in a way that
produces overall consistency. An early observation of the
recovery of three-dimensional structure from a sequence
of two-dimensional silhouettes was reported by Miles';
Wallach and O'Connel2 later dubbed the phenomenon the
kinetic depth effect. For the case of rigid rotations of
discrete points, Ullman3 determined the conditions that
must be satisfied for the solution to be computationally
realizable. Ullman's more recent models4 allow for some
departure from rigidity, as might arise either from actual
nonrigid motion or from noise in the input.

The complete problem becomes more difficult if one
tries to extend this type of approach to images that are
composed of line segments and smooth curves (not to
mention gray-level images) instead of just isolated dots.
This increased difficulty is due to the aperture problem:
A motion detector viewing a moving line through a small
aperture will be blind to motions of the line along its own
length and will therefore be unable to report the actual
two-dimensional image velocity within its field of view.

The aperture problem complicates the analysis of struc-
ture from motion because algorithms such as Ullman's re-
quire the two-dimensional image velocity at each point,
while sensors with a small field of view can report only
the local orientation and the orthogonal velocity. Many
models of the structure-from-motion problem assume that
estimates of the two-dimensional velocities are available
as input.3 7 One elegant approach has been proposed by
Hildreth"9 for figures composed of closed curves. She
suggested that a useful way to attack the problem would
be to try to minimize the amount of variation in the hypo-
thetical image velocities. Hildreth investigated a number
of possible ways to define variation, but in most of her

work she used the squared magnitude of the vector differ-
ence between the velocities of adjacent points on the
curve. By summing the local variation over the entire
figure, one may obtain a single number for a given hypo-
thetical solution of the aperture problem. Calculus may
be used to find the solution that minimizes this quantity;
Hildreth called this solution the smoothest velocity field.
In this paper I use the term roughness to denote the varia-
tional quantity that is minimized.

One objection to Hildreth's approach is that, although
the solution of the aperture problem is subsequently used
to analyze structure from motion, the aperture problem is
approached without regard for possible three-dimensional
constraints. Intuitively, we find it more information effi-
cient to consider the ultimate three-dimensional interpre-
tation when resolving the two-dimensional ambiguity,
instead of being locked into a two-dimensional solution
that could possibly be inconsistent with three-dimensional
rigidity.

Hildreth has shown qualitatively that the algorithm
makes mistakes in cases in which humans also experience
illusory percepts, such as in the barber-pole illusion. The
experiments described in this paper were performed in an
attempt to assess the validity of Hildreth's algorithm as a
description of human perception. The approach was to
use a stimulus that had two distinct physically plausible
three-dimensional interpretations; each interpretation
corresponded to a different solution of the aperture
problem. These ambiguous stimuli violate one of the con-
ditions of Hildreth's algorithm, namely, that any intersec-
tions of the curve in the image should correspond to actual
intersections of the three-dimensional generator. For
this reason, initially no attempt was made to solve the
minimization problem and find the smoothest velocity
field. However, the roughness of a given hypothetical so-
lution is still a well-defined mathematical quantity. Since
it is known that when humans are presented with the am-
biguous stimuli they usually see one of the two rigid inter-
pretations, I simply computed the roughnesses for the two
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rigid interpretations; if the visual system solves the
aperture problem by using a calculation such as rough-
ness, then the subjects should perceive the interpretation
with the lower roughness value.

2. METHODS

A. Lissajous Figures
The ambiguous stimuli were drawn from a class of curves
known as Lissajous figures. Each figure has two distinct
three-dimensional interpretations that correspond to
quite different shapes. Each of the two interpretations is
a three-dimensional curve that lies on the surface of a
cylinder, but the orientation of the cylinder is different for
each of the two interpretations.

The three-dimensional appearance of animated Lissa-
jous figures was observed some time before the term ki-
netic depth effect was coined.'0 Philip and Fisichelli
subsequently investigated the effects of various parame-
ters on the spontaneous depth reversals in Lissajous
figures. 11,12 These depth reversals are yet another ambi-
guity in the figures (similar to the depth reversals seen
with the Necker cube), which is quite distinct from the
ambiguity that is the topic of this paper; if one counts
depth reversals as well as shape differences, there are a
total of four possible interpretations. From these early
reports it is impossible to determine whether the investi-
gators were even aware that the two interpretations with
different rotational axes were physically consistent with a
single stimulus. For example, Fisichelli'2 describes
changing the axis of rotation by interchanging the cables
providing the deflection signals to the cathode-ray tube.

KLL]

The parameter values used in these studies, how-
ever, were ones that produce an extremely strong bias in
favor of one of the two interpretations, so perhaps it was
simply a matter of chance that spontaneous changes of ro-
tational axis were not observed.

Before giving the explicit formulas describing Lissajous
figures, it may be illustrative to consider the problem of
depicting an unambiguous curve that lies on the surface
of a cylinder. Imagine that we have a vertically oriented
cylinder of unit radius and that we wish to paint on the
surface of this cylinder a curve whose vertical position is
defined as a function of the angular position y = f(0). (I
adopt a coordinate system in which x and y are the normal
viewing screen coordinates, with z being a depth axis.)
In this case I describe the curve parametrically by the fol-
lowing equations:

x(0) = sin(0),

Y(0) = (0),

z(0) = cos(0).

(la)

(lb)

(ic)

The curve defined by these parametric equations will lie
on the surface of a unit-radius cylinder regardless of the
nature of the function f(0). If we interchange the defini-
tions of x and y, then we obtain a curve that lies on a
horizontal cylinder. This observation is the key to under-
standing the ambiguity of Lissajous figures: If we let
f(0) = sin(0), then the above equations are symmetric in x
and y, and the resulting curve lies on both cylinders.

This is illustrated graphically in Fig. 1. The top row
shows the situation of a generic function f (0) painted onto
a vertical cylinder. The leftmost panel shows the cylin-

0o

7
Li

0
Fig. 1. Illustration of the three-dimensional ambiguity of Lissajous figures. The top row depicts a random waveform (shown at the left)
that is rolled into a cylinder. Several views of the cylinder are shown. In the second row, the random waveform is replaced by two cycles
of a sinusoid. When this curve is rolled into a cylinder and viewed from the side (far right), the parametric equations describing the
projected curve are symmetric in x and y (with the exception of the frequency parameters), implying that the projected curve could
equally well lie on a horizontally oriented cylinder. The curve that generates the same projection when rolled into a horizontal cylinder is
shown in the bottom row. Although only a single phase is shown, this ambiguity remains when the cylinders are rotated.
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der unrolled [i.e., a plot of f(0)]. The successive panels
show orthographic projections of the cylinders from a
number of viewpoints, ending with the side view. The
second row shows the same process applied for the special
case of f = sin(20). In the third row, the function f =

sin(0/2) is wrapped onto a horizontal cylinder. Note that
the xy projections (the rightmost panels of the second and
the third rows) are identical. Relatively unambiguous
views of the two shapes are obtained in the intermediate
rotations shown in Fig. 1. Note that there are no three-
dimensional self-intersections in the saddle-shaped curve
shown in the second row, while for the pretzel-shaped
curve depicted in the third row the intersection in the fi-
nal projection corresponds to a self-intersection of the
three-dimensional curve.

The three-dimensional curves that project to Lissajous
figures are described by the following sets of parametric
equations:

Case 1 (curve lies on the vertical cylinder):

xv(0) = Ax sin(co.0),

yv(O) = Ay sin(coyO + y),

zv(0) = Ax cos(w.,0).

showing the velocities associated with each of the two in-
terpretations is shown in Fig. 3.

B. Psychophysical Procedures
The stimuli were presented on a cathode-ray tube (Tek-
tronix Model 611). Signals for the X and the Y deflections
were produced by digital-analog converters, or DAC's
(ADAC Models 1023AD and 1023EX), under the control of
a PDP11-23 computer. The x and the y gains of the dis-
play scope were carefully adjusted to provide the same
spatial displacement for a given DAC increment, thereby
correcting for any possible gain differences between the
two DAC's.

The DAC's incorporated a direct memory access con-
troller (ADAC Model 162ODMA), which permitted lists of
coordinate pairs to be transferred rapidly from memory.
After each pair of coordinates was transferred, the inter-
face generated a brief pulse that was used for the Z
(brightness) input to the cathode-ray tube. This was a
transistor-transistor logic pulse that had a duration of ap-

(2a)

(2b)

(2c)

Case 2 (curve lies on the horizontal cylinder):

xH(O) = Ax sin(coxO + O.,),

YH(O) = Ay sin(woy0),

ZH(O) = Ay cos(y0).

(3a)

(3b)

(3c)

The frequency parameters o, and coy must be integers for
the curve to close on itself as 0 runs from 0 to 2gr. Chang-
ing the phase ( or y) corresponds to rotating the cylin-
der about its axis.

We can see the equivalence of the projected curves in
these two cases by making the following substitutions:

0 = 0' + /cox, (4a)

coy
0Y= - O." (4b)

&Ox

Fig. 2. Series of possible stimulus frames together with oblique
views of the two possible generating shapes. The upper row
shows slightly oblique views of the corresponding vertical cylin-
der inscribed with the saddle-shaped figure, while the lower row
depicts views of a horizontal cylinder inscribed with the pretzel-
shaped figure. Note that the cylinder in the upper row rotates
through 90° from left to right, while the cylinder in the lower row
rotates through a full 180°.

By substituting these values into Eqs. (2a) and (2b), we
easily see that

XV(O') = XH(O),

Yv(0') = YH(O).

(5a)

(5b)

The z function is irrelevant since we assume orthographic
projection onto the xy plane.

To animate the figures, let the phase [0'. in Eq. (3a)] be
a function of time:

<0.t) = 21rcott, (6)

where the parameter cot represents the angular velocity in
revolutions per unit of time. Note that, from Eq. (4b), the
angular velocities in the two interpretations differ by the
ratio of the frequencies of the generating functions.
Figure 2 depicts a few frames of a sequence, together with
oblique views of the two possible shapes. An example

Fig. 3. Velocities associated with the two possible interpreta-
tions of an animated Lissajous figure. At the left are shown the
velocities corresponding to perceived rotation about a vertical
axis (merry-go-round motion). This corresponds to the saddle-
shaped figure shown in the middle row of Fig. 1. Note that the
velocities of the two limbs that intersect in the middle of the fig-
ure have opposite directions. At the right are shown the veloci-
ties corresponding to rotation about a horizontal axis (rolling-pin
motion); this corresponds to the pretzel-shaped figure shown in
the bottom row of Fig. 1. Note that where the curve intersects
itself in the center the velocities match, since the intersection in
the figure corresponds to an actual three-dimensional intersec-
tion in the projected figure.
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proximately 1 As. The front panel controls were adjusted
to produce the maximum possible luminance. The time
needed to write a single point with this apparatus was
approximately 10 s. The curves described by Eqs. (3a)
and (3b) were produced by plotting 512 points at uniformly
sampled values of the parameter 0. Unfortunately, this
resulted in a nonuniform spacing of the points along the
curve; although the point spacing was always less than the
spot size (so that the curves appeared continuous), this did
result in small intensity variations, inversely proportional
to s/80, along the curve. The coordinate lists for the se-
quence of frames making up a single stimulus were com-
puted (and were resident in memory) before the onset of
the stimulus; the direct memory access transfers for the
individual frames were initiated following interrupts from
a real-time clock. The frame rate was 100 Hz. The com-
putation of the coordinate lists for each stimulus was
speeded by using tables of precomputed values of sine and
cosine; before each trial, these tables were scaled by the
aspect ratio factors to reduce the number of multiplica-
tions needed.

Each trial consisted of a 2-s presentation of a figure de-
fined parametrically by Eqs. (3a) and (3b). For a given
experimental condition, the frequency parameters co. and
coy were fixed, but the aspect ratio AX/A, was varied from
trial to trial. The product of A, and A, (and therefore the
swept area of the stimulus) was held constant. The tem-
poral frequency (ot that determined the rotation frequen-
cies was set so that the faster of the two rotations had a
rate of 1 Hz.

After each trial the subjects were instructed to report
whether the figure was perceived in rolling-pin motion or
merry-go-round motion. Although the subjects almost
universally reported that the stimuli appeared three di-
mensional, they were informed that, in the event that they
did not see a three-dimensional figure, they could make
the judgment on the basis of whether the two-dimensional
motion was primarily up and down (rolling pin) or side to
side (merry-go-round). The subjects were also instructed
that, in the event that the percept changed during the
course of the stimulus presentation, they should base their
responses on the appearance at the end of the presenta-
tion. The subjects entered their responses by using the
detached keyboard of the computer console.

It was noted in pilot experiments that elongation of the
figure in one dimension tended to cause the rotation axis
to be perceived in the same dimension as the elongation,
i.e., large values of A/A, produced a rolling-pin percept,
while small values produced a merry-go-round percept.
An up-down staircase was therefore used to control the
selection of successive values of AX/AY, such that a rolling-
pin response would decrease the value of A/AY by a
constant factor, while a merry-go-round response would
increase it by the same factor. The factor used was
0.1 log unit, or approximately 1.26.

The subjects were tested under six conditions, consist-
ing of two orientations of three pairs of values for co, and
Wy. These were co = 2, y = 1; o, = 3, coy = 1; and o: =
3,coy = 2. The remaining three conditions were obtained
by simply exchanging o,, and cy, Corresponding pairs of
conditions were always run together. Two pairs of condi-
tions were combined to make a block. Each of the three
possible blocks was run twice, resulting in four replica-

tions of each condition. Within a block, each condition
was assigned a single staircase; the trials were clustered
into groups of four, consisting of one trial from each stair-
case. Within each cluster of trials the order of the condi-
tions was controlled by a pseudorandom-number generator.
Within each block, 50 judgments were made for each
condition.

The subjects consisted of one experienced psychophysi-
cal observer (the author) and an undergraduate student
who had some practice in making psychophysical judg-
ments but who was naive with respect to the purpose of
the experiment. Additional subjects were tested in indi-
vidual conditions but did not complete the experimental
protocol; the (incomplete) results from these subjects were
similar to those shown for the two subjects who completed
the full regimen of observations. Later, an additional ex-
perienced subject (JAP) was tested with a different
apparatus. This apparatus consisted of a raster graphics
system with a frame rate of 60 Hz. Subject JAP com-
pleted three blocks in which all six conditions were inter-
leaved. All the other parameters were identical to those
described above.

Typical data from a single run of a single condition are
shown in Fig. 4. The percentage of rolling-pin responses
is plotted against the log of A:,/Ay. The raw data from
each block were fitted with a cumulative normal by using
a weighted least-squares fitting procedure described in
detail by Mulligan and MacLeod.3 The inflection point
of the curve is located at the aspect ratio for which we
would expect to receive an equal number of rolling-pin
and merry-go-round responses; I refer to this aspect ratio
as the critical aspect ratio (CAR). For each of the six con-
ditions, four replications provided independent estimates

0CU
0

.
0

'-

0
0

0
'-4

r.
t:
To

-1.0 -0.5 0.0 0.5 1.0

log aspect ratio
Fig. 4. Typical data from a single run of the experiment. The
abscissa represents the log of the aspect ratio A/Ay, while the
ordinate represents the proportion of responses indicating
rolling-pin motion seen. The open circles are for the condition
co = 2, oi = 1, while the filled circles are for the dual condition
Ao, = 1, coy = 2. Each curve represents 50 judgments collected
with a single staircase. Raw data such as these were fitted with
a cumulative normal to estimate the CAR at which the two per-
cepts were equally likely. For these data, the fitting procedure
produced estimates of the CAR of -0.30 and 0.64. The inequal-
ity of the absolute values of these numbers is evidence of an-
isotropy or bias.
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For vertical axis rotation, all the velocities are horizontal:

v = Aco: cos(wo:, + Ax),

av = A:,cX 2 sin(w:x0 + Ox).
ao

(11)

(12)

The remaining quantities needed to evaluate the sum in
Eq. (8) are

as =( ax2 (ay)21/2

ao [\ ao) aoi

d = A:,wx cos(Ox0 + Ox),

- = AyWY cos(wOy0).
ao

(13)

(14)

(15)

fractional rotation
Fig. 5. Variation of the logarithms of the roughnesses R., and Ry
as a function of rotational phase, which is expressed as a fraction
of 27r (one complete rotation). The plot shows the log of rough-
ness computed at 256 uniformly spaced values of rotational phase
<ax. The values of the parameters were A., = Ay = 1, (ox = 1,
coy = 2, N = 1024. The upper curve is the roughness computed
for the rolling-pin interpretation, Ry, while the lower curve is the
roughness computed for the merry-go-round interpretation, R,,.
The separation of the curves indicates a strong preference of the
model for the merry-go-round interpretation for this set of
parameter values.

of the CAR for each subject. The fitting procedure also
estimated the semi-interquartile difference, which is the
change in the abscissa (log aspect ratio) required to change
the response rate from 50% to 25% or 75%.

C. Smoothness Estimates
Predictions were made by using an adaptation of the com-
putation proposed by Hildreth. 5'9 Hildreth defined a
variational measure on possible two-dimensional velocity
fields and solved for the velocity field that minimized this
quantity, calling this the smoothest velocity field. Here I
adopt a much simpler approach: Instead of finding the
minimum, I simply compute the roughness of each of the
two rigid solutions and assume that the visual system will
prefer the interpretation having the lower value. No
claim is made that either solution actually corresponds to
a local minimum of the roughness function.

Following Hildreth, I used the following quantity to de-
fine roughness:

R(lv) - ds 2
( as

This integral was approximated as a discrete sum as
N lid/ao 2

= las/aol

Let us use the terms Rx and Ry to represent the rough-
nesses computed for motion about the vertical and the
horizontal axes, respectively. These quantities depend
on the amplitude factors Ax and Ay, the frequencies O: and
WY, and the rotational phase (x),. It turns out that the
roughnesses vary as a function of rotational phase; this
variation is shown in Fig. 5, where the log of the rough-
ness is plotted as a function of phase. The phases at
which the roughness measure attains a maximum corre-
spond to the rotational positions where the front and the
back sections of the generating curve project onto the
same curve in the image, as occurs in the leftmost and
the rightmost panels of Fig. 2.

The measure of roughness defined in Eq. (8) is affected
by the total arc length, which is a function of the rota-
tional phase. If we double both of the amplitude factors
Ax and Ay, the roughnesses R., and Ry also double (as does
the total arc length). Thus we see that, if we wish to have
a roughness measure that depends only on shape and not
on absolute size, we might obtain this by dividing by the
total arc length L:

L = J -dOd.
00~ a

0
4 -4

0
'O

0

(7)

(8)

where 0 is the parameter used to trace out the curves in
Eqs. (2) and (3) and d is equal to 2r/N. This quantity
was computed for each of the two possible interpretations:
For rotations about a horizontal axis, all the velocities are
in the vertical direction:

v, = Ayw cos(w,0), (9)

ah = - AWY sin(wy0). (10)
00

0.0

-1.0 -

-2.0 -

0.0 0.5

fractional rotation

(16)

1.0

Fig. 6. Variation of log roughness ratio as a function of rota-
tional phase. The values of the parameters were ct), = 1, toy = 2,
N = 1024. The three curves represent three different values of
the aspect ratio A,/Ay; from the upper curve to the lower curve
the aspect ratios were 4.0, 1.0, and 0.25.

2.0 -

1.0 -

v)
a)

0

A
T)o

to

0.0-

0.0 0.5 1.0

l

Jeffrey B. Mulligan



526 J. Opt. Soc. Am. A/Vol. 9, No. 4/April 1992

O 0.00 

-0.50 
-1 0 1

log aspect ratio

Fig. 7. Log roughness ratio integrated over rotational phase as a
function of log aspect ratio. The log aspect ratio was sampled
uniformly in 20 steps from -1 to 1. The values of the parame-
ters used to generate the lower line were c, = 1, co = 2,
N = 1024, while the upper line represents co., = 2, coy = 3.

For the parameter values used to generate the data shown
in Fig. 5, however, the arc-length variations as a function
of phase are less than 5o, so the qualitative picture is not
affected by this change.

Although the roughnesses vary as a function of phase, it
can be seen from Fig. 5 that the ratio of the roughnesses
is relatively constant, as indicated by the roughly constant
vertical separation on the log ordinate. The log rough-
ness ratio as a function of phase is plotted in Fig. 6 for
different aspect ratios. Note that by taking the ratio of
the roughnesses I have divided out the effect of total arc
length.

A single number characterizing the relative smoothness
of the two interpretations was obtained by integrating the
log roughness ratio across the rotational phase. This was
justified on the grounds that the ratio was relatively con-
stant across phases and because, although subjects' per-
cepts are bistable, the transitions do not seem to be phase
locked with the rotation. Once this average ratio has
been computed, we can estimate the predicted value of the
CAR by solving for the aspect ratio that yields a mean log
roughness ratio of 0. Because the visual system might
integrate on some other transformed representation, we
should be prepared to accept an error of the order of the
vertical variation of the curves in Fig. 6.

Figure 7 plots the log roughness ratio as a function of
the log aspect ratio for t, = 1, coy = 2 and , = 2 ,coy = 3 .
The points represent the mean of 256 different phases
sampled uniformly over the interval 0 to ir/4. The sample
phases were placed so as to straddle the phases at which
the singularities occur, such as O., = 0. It may be ob-
served that the points fall close to a straight line, with a
slope of 1/2. Linear regression was used to fit a line to
the points; the log of the CAR was taken to be the X inter-
cept from the regression equation. CAR's were obtained
in this way for a number of pairs of frequencies (£0:,c£y)
the log CAR is plotted against the log frequency ratio
cu,/£0oy in Fig. 8 (squares). Note that the points fall close to
a line with a slope of -2. A weak explanation for this can

be made from the fact that A, appears in Eq. (12) with an
exponent of 1, while (o, appears with an exponent of 2.
The graph in Fig. 8 is symmetric: The positions of the
points in the upper-left-hand quadrant are simply the po-
sitions of the points in the lower-right-hand quadrant re-
flected through the origin. In a practical sense, this
means that the shape of the figure at the CAR is unaf-
fected if the entire figure is rotated 90°.

D. Deviations from the Smoothest Velocity Field
In Subsection 2.C predictions were made on the basis of
which of the two rigid interpretations is smoother, i.e.,
which rigid interpretation has the lower value of the
roughness measure introduced by Hildreth. In this
subsection a slightly different approach is explored:
I first solve for the smoothest velocity field (which does
not correspond to the rigid motion of a three-dimensional
figure) and then ask to which of the two possible rigid
interpretations it is more similar.

The smoothest velocity field is obtained in the manner
described by Hildreth. The expression for the roughness
[Eq. (8)] is differentiated with respect to the (unknown)
tangential component of the velocity at each sample point
and then equated to zero. The result is a system of N
linear equations in N unknowns, which is easily solved
with standard linear algebra. Figure 9 shows the result-
ing velocity field for a representative figure.

A measure of similarity between two velocity fields was
formed by summing the squared vector differences be-
tween the rigid velocities and the corresponding velocity
vectors from the smoothest field. This quantity was com-
puted for each of the two rigid interpretations at a number
of different aspect ratios for each set of parameter values.
When the log ratio of these two quantities is plotted ver-
sus the log aspect ratio, a pattern of results similar to that
seen in Fig. 7 is obtained. Linear regression was used
to estimate the x intercept, i.e., the CAR for which the

0
(U
'4

cu

.

V)

(U

0o60

-2
-1 0 1

log frequency ratio

Fig. 8. Log CAR as a function of log frequency ratio co,/coy. The
points sampled from the abscissa correspond to the following or-
dered pairs (co,, coy): (1, 5), (1,4), (1,3), (2,5), (1,2), (3, 5), (2,3),
(3, 4), (4, 5), (5, 4), (4, 3), (3, 2), (5, 3), (2, 1), (5, 2), (3, 1), (4, 1), (5, 1).
The squares indicate the predictions based on the roughness of
the rigid interpretations; the circles indicate the predictions
based on differences between the rigid interpretations and the
smoothest velocity field.
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Fig. 9. Smoothest velocity field, computed by using Hildreth's
algorithm.

smoothest velocity field was equally different (using the
integrated squared vector difference metric) from each of
the two rigid solutions. The predicted CAR's generated
by this method are shown by the circles in Fig. 8, along
with the predictions from the original method. Like the
original predictions, these new predictions fall on a line
with a slope close to -2, although this line is slightly
steeper than that describing the original predictions.

3. RESULTS

The experimental results are shown in Fig. 10. The
mean log CAR over the four replications is plotted as a
function of the log frequency ratio for subjects LR (tri-
angles), JBM (circles), and JAP (open squares). The
small squares show the corresponding predictions from
Fig. 8. The numerical data used to generate Fig. 10 are
given in Table 1, along with the standard errors.

Several features of Fig. 10 are notable. First, although
the data do deviate from the predictions, the overall slope
of the data points is close to -2, as in the prediction,
giving qualitative support to our modified Hildreth model.
Second, the deviations from the predictions are exclusively
upward from the predictions, indicating a bias in favor of
the merry-go-round percept. The bias is evinced not
simply by deviations from the predictions but from the
fact that pairs of points that correspond to two orienta-
tions of a given shape are not located symmetrically with
respect to the origin. Any set of data possessing central
symmetry would be evidence for isotropy, regardless of
how unlike the prediction it might be. The prediction
does show this symmetry, since there is no anisotropy
built into the model.

Although the deviations from the predictions shown in
Fig. 10 look rather modest, the ordinate is a logarithmic
scale, and small deviations therefore correspond to pro-
found differences in shape. To assess the significance of
the anisotropy, however, it is necessary to compare these
deviations with the range of aspect ratios for which the
percept is bistable. This is indicated by the transition
zone of the psychometric function shown in Fig. 4, which
is typical for all the subjects. In most cases the size of
the anisotropy effect (the sum of the logs of the CAR's for
corresponding conditions) is larger than the width of this
transition zone, indicating that there are stimuli that are
consistently perceived in merry-go-round motion regard-
less of the orientation in which they are presented.

4. DISCUSSION

A. Vertical-Horizontal Illusion
The vertical-horizontal illusion (VHI) refers to the fact
that a vertical line will appear longer than a horizontal

line of the same length. The details of this much-studied
illusion are summarized well by Robinson.'4 Observers
similarly overestimate the vertical component of motion
in obliquely moving targets.' 5 This suggests a simple ex-
planation of the anisotropy observed in the data, namely,
that the visual input is subjected to an affine distortion
before the motion is analyzed. A deformation of the im-
age consistent with the VHI would produce an anisotropy
of the correct sign for the subjects whose data are shown
in Fig. 10; if the visual input were stretched in the vertical
dimension by a factor a and compressed in the horizontal
dimension by the same factor, then the lines in Figs. 8 and
10 would simply be shifted horizontally by an amount
2 log(a). We can estimate the amount of deformation
needed to account for the subjects' data by calculating the
horizontal shift necessary to superimpose the regression
lines for the predicted and the observed results in Fig. 10.
When this is done, an aspect ratio factor of 1.20 (0.079 log
unit) is obtained for subject JBM, and a factor of 1.21
(0.0825 log unit) is obtained for subject LR.

B. Anisotropy in Two-Dimensional Apparent Motion
Correspondence
Gengerelli'6 demonstrated an anisotropy of two-dimen-
sional apparent motion correspondence with the stimulus
illustrated in Fig. 11(a), sometimes referred to as a
bistable quartet. The stimulus consists of two pairs of
luminous dots that are flashed in alternation. The two
pairs are located at opposite corners of a rectangle.
When the pairs are alternated in time, several percepts
are possible: The two dots that are visible at any given
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Fig. 10. Log CAR versus log frequency ratio for three subjects
plotted together with model predictions. The model predictions
are indicated by the small squares that lie on the straight line
with a slope approximately equal to -2, the triangles indicate the
data for subject LR, the circles indicate the data for subject
JBM, and the large squares indicate the data for subject JAP.
Frequency/aspect ratio combinations in the upper-right-hand
quadrant are seen primarily in rolling-pin motion, while those in
the lower-left-hand quadrant are seen primarily in merry-go-
round motion. The negatively sloped lines indicate the boundary
in the parameter space between these two regimes. The fact
that pairs of data points representing rotated stimuli are not lo-
cated symmetrically with respect to the origin indicates the an-
isotropy, which for these data favors the merry-go-round
interpretation.
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Table 1. Raw Data Used To Generate the Graph
in Fig. 9G

Subject cO cy log CAR SEM

JBM 1 2 0.667 0.048
2 1 -0.385 0.084
1 3 1.030 0.020
3 1 -0.752 0.066
2 3 0.680 0.052
3 2 -0.294 0.032

LR 1 2 0.657 0.040
2 1 -0.185 0.022
1 3 0.913 0.020
3 1 -0.547 0.064
2 3 0.436 0.020
3 2 -0.283 0.062

JAP 1 2 0.594 0.011
2 1 -0.201 0.003
1 3 0.869 0.007
3 1 -0.673 0.004
2 3 0.502 0.005
3 2 -0.318 0.007

aFor subjects JBM and LR, the mean log of the CAR was computed over
four replications of each of the six frequency pairs, while three replications
were used for subject JAP. The fifth column shows the standard error for
each mean.

time may be seen to oscillate in either a horizontal or a
vertical direction. It would also be physically consistent
for the dots to be seen in circulating motion around the
perimeter of the figure, but this is rarely observed.

In this stimulus the aspect ratio of the figure affects
the perceived direction of motion. When the horizontal
separation is small relative to the vertical separation, it is
more likely that horizontal motion will be seen. It is pos-
sible to measure a psychometric function relating the as-
pect ratio to the proportion of the time that horizontal
motion is seen. The inflection point of this psychometric
function corresponds to a CAR for this task, i.e., the aspect
ratio for which horizontal and vertical motions are equally
likely to be perceived. With an aspect ratio of unity, the
subjects showed a preference for vertical correspondence
when the figure was fixated centrally. Note that this is
the opposite of what would be predicted if motion corre-
spondence were determined simply by proximity after a
deformation consistent with the VHI.

Gengerelli"6 found that this bias disappeared when the
display was fixated eccentrically, so that the entire display
fell within a single cortical hemifield, and concluded that
the bias resulted from a preference to make correspon-
dence within a cortical hemifield. Ramachandran et al. 17
performed a similar study on commissurotomy, or split-
brain, patients and found that, although the bias was exag-
gerated, the stimulus was still quite ambiguous, suggesting
that the perception of apparent motion across the vertical
midline was easily mediated by subcortical structures.

These results pose a puzzle with respect to the results
of the present experiment: If there is, for whatever rea-
son, a preference for vertical correspondences in ambigu-
ous motion displays, then we would expect to see a
preference for rolling-pin rotation in the ambiguous ki-
netic depth effect figures used in the present study. This
is the opposite of the bias observed in the present study.

If, as is commonly supposed, the computation of two-
dimensional optic flow is a necessary precursor to the
computation of structure from motion, then any biases in-
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herent in the two-dimensional process should be reflected
in the responses of the three-dimensional system. If
there are no biases in the two-dimensional motion process,
then there cannot be any biases in the three-dimensional
process if the ambiguity must be resolved at the two-
dimensional stage.

An alternative possibility is that two-dimensional ambi-
guities are not resolved before the computation of three-
dimensional structure. An architecture that would
permit this is a distributed representation in which all the
possible two-dimensional velocities are represented; the
perceived direction would usually correspond to the most-
active unit, but less-active units could still pass their sig-
nals to higher levels. Even if a bias existed at an early
stage, it would be possible for a different (stronger) bias at
a later stage to dominate the resolution of the ambiguity.
Distributed models for solving the aperture problem have
been proposed by Heeger,'8 Sereno,' 9 and Perrone.2 0

Simoncelli et al.2 ' have proposed a form of this architec-
ture that is based on probabilities and that includes stages
for three-dimensional representation.

C. Ecological Considerations
I have considered several possibilities for the site at which
the bias is introduced; I have not, however, said anything
about why the bias might be present or whether it has any
functional significance. I have mentioned the possibility
that the bias is a direct result of an early warping of the
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Fig. 11. (a) Stimulus configuration used by Gengerelli16 and
Ramachandran et al.' 7 The open circles represent dots present
at time t, which are replaced by dots at the positions shown
by the filled circles at time t2. When this sequence is presented
cyclically, the percept is usually of a pair of dots in oscillatory
motion, either side to side or up-down. (b) The perceived di-
rection of motion can be biased by changing the aspect ratio of
the figure.
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visual field by the VHI and has no intrinsic significance.
If, on the other hand, the bias is restricted to the interpre-
tation of three-dimensional objects and scenes, then we
are faced with the intriguing possibility that the bias
arises because of some aspect of the three-dimensional
world. According to signal detection theory, an ob-
server's criterion is influenced by the a priori probability
of a given stimulus2 2 ; in the present case, it would be
sensible to expect a bias similar to that observed if merry-
go-round motion were in fact more prevalent in the
environment.

Does such an ecological imbalance exist? If so, it is
likely to arise from observer self-motion, as opposed to the
motion of other objects. Note that there is usually a rota-
tional component to the relative motion between objects
and a moving observer, the axis of which depends on the
relation between the object and the direction of motion.
For example, when an ambulant observer moves through
the forest, the tree trunks at eye level have a small compo-
nent of merry-go-round motion in addition to a large trans-
lational component. Similarly, when the observer
surmounts a fallen log, the log has a component of rolling-
pin motion. Perhaps the bias developed in creatures that
were living under open skies and that never had any fallen
logs overhead, i.e., that portion of the superior visual field
that would have produced a component of rolling-pin mo-
tion was devoid of pattern. This argument seems some-
what contrived, however, and requires many assumptions
about both the nature of the environment and the behav-
ior of the observer with regard to locomotion and eye
movements. If one assumes that an ambulant observer
tends to look in the direction of motion, then one would
expect that the types of motion encountered would be dif-
ferent for the different regions of the visual field; in par-
ticular, this might produce a bias toward rolling-pin
motion in the inferior visual field. An investigation of
the dependence of the observed bias on position in the vi-
sual field would be an interesting topic of future research.

5. CONCLUSIONS

In spite of the fact that Hildreth's theory does not predict
the anisotropy seen in this study, the fact that a modified
version of the theory predicts the correct dependence on
frequency ratio (i.e., the correct slope in Fig. 10) is strong
support for the theory. The theory can easily be made to
predict the biases if an affine transformation consistent
with the VHI is assumed to precede the motion analysis.
Reported anisotropies in two-dimensional motion corre-
spondence, however, are inconsistent with this view.'6 '7

One possibility is that the phenomena studied by
Ramachandran et al.' 7 involve completely different mech-

anisms subject to their own distinct biases. An alterna-
tive explanation is that the observed bias is introduced at
a level involving three-dimensional representation; an im-
plication of this hypothesis is that the two-dimensional
aperture problem is not resolved independently of three-
dimensional interpretation.
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