Collecting Sleep, Circadian, Fatigue, and Performance Data in Complex Operational Environments (2019)
Sleep loss and circadian misalignment contribute to a meaningful proportion of operational accidents and incidents. Countermeasures and work scheduling designs aimed at mitigating fatigue are typically evaluated in controlled laboratory environments, but the effectiveness of translating such strategies to operational environments can be challenging to assess. This manuscript summarizes an approach for collecting sleep, circadian, fatigue, and performance data in a complex operational environment. We studied 44 airline pilots over 34 days while they flew a fixed schedule, which included a baseline data collection with 5 days of mid-morning flights, four early flights, four high-workload mid-day flights, and four late flights that landed after midnight. Each work block was separated by 3-4 days of rest. To assess sleep, participants wore a wristworn research-validated activity monitor continuously and completed daily sleep diaries. To assess the circadian phase, pilots were asked to collect all urine produced in four or eight hourly bins during the 24 h after each duty block for the assessment of 6-sulfatoxymelatonin (aMT6s), which is a biomarker of the circadian rhythm. To assess subjective fatigue and objective performance, participants were provided with a touchscreen device used to complete the Samn-Perelli Fatigue Scale and Psychomotor Vigilance Task (PVT) during and after each flight, and at waketime, mid-day, and bedtime. Using these methods, it was found that sleep duration was reduced during early starts and late finishes relative to baseline. Circadian phase shifted according to duty schedule, but there was a wide range in the aMT6s peak between individuals on each schedule. PVT performance was worse on the early, high-workload, and late schedules relative to baseline. Overall, the combination of these methods was practical and effective for assessing the influence of sleep loss and circadian phase on fatigue and performance in a complex operational environment.
Circadian, Collecting, Complex, Data, Environments, Fatigue, Operational, Performance, Sleep
Journal of Visual Experiments, 150, e59851, DOI:10.3791/59851
|